Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Paula Montero

    Paula Montero

    Delayed-type hypersensitivity (DTH) is caused by a broad number of drugs used in clinic, and antineoplastic drugs show an elevated proportion of DTH, which potentially affects the quality of life of patients. Despite the serious problem... more
    Delayed-type hypersensitivity (DTH) is caused by a broad number of drugs used in clinic, and antineoplastic drugs show an elevated proportion of DTH, which potentially affects the quality of life of patients. Despite the serious problem and the negative economic impact deriving from market withdrawal of such drugs and high hospitalization costs, nowadays, there are no standard validated methods in vitro or in vivo to evaluate the sensitizing potential of drugs in the preclinical phase. Enhanced predictions in preclinical safety evaluations are really important, and for that reason, the aim of our work is to adapt in vitro DPRA, ARE-Nrf2 luciferase KeratinoSensTM, and hCLAT assays for the study of the sensitizing potential of antineoplastic agents grouped by mechanism of action. Our results reveal that the above tests are in vitro techniques able to predict the sensitizing potential of the tested antineoplastics. Moreover, this is the first time that the inhibition of the VEGFR1 path...
    Background Pulmonary hypertension (PH) associated to idiopathic pulmonary fibrosis (IPF) portends a poor prognosis. IL-11 has been implicated in fibrotic diseases, but their role on pulmonary vessels is unknown. Here we analyzed the... more
    Background Pulmonary hypertension (PH) associated to idiopathic pulmonary fibrosis (IPF) portends a poor prognosis. IL-11 has been implicated in fibrotic diseases, but their role on pulmonary vessels is unknown. Here we analyzed the contribution of IL-11 to PH in patients with IPF and the potential mechanism implicated. Methods Pulmonary arteries, lung tissue and serum of control subjects (n = 20), IPF (n = 20) and PH associated to IPF (n = 20) were used to study the expression and localization of IL-11 and IL-11Rα. Two models of IL-11 and bleomycin-induced lung fibrosis associated to PH were used in Tie2-GFP transgenic mice to evaluate the contribution of IL-11 and endothelial cells to pulmonary artery remodeling. The effect of IL-11 and soluble IL-11Rα on human pulmonary artery endothelial cells and smooth muscle cell transformations and proliferation were analyzed. Results IL-11 and IL-11Rα were over-expressed in pulmonary arteries and serum of patients with PH associated to IPF ...
    In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects... more
    In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects the interstitial space, there are many fibrotic events that have high and dangerous consequences for the lungs. Asthma, chronic obstructive pulmonary disease (COPD), excessive allergies, clearance of infection or COVID-19, all are frequent diseases that show lung fibrosis. In this review, we describe the different kinds of fibrosis and analyse the main types of cells involved—myofibroblasts and other cells, like macrophages—and review the main fibrotic mechanisms. Finally, we analyse present treatments for fibrosis in the lungs and highlight potential targets for anti-fibrotic therapies.
    Background: Paclitaxel is a microtubule-stabilizing chemotherapeutic agent. Despite its widespread use, it damages healthy tissues such as skin. The goal of this study was to prove that the real impact of paclitaxel-induced skin toxicity... more
    Background: Paclitaxel is a microtubule-stabilizing chemotherapeutic agent. Despite its widespread use, it damages healthy tissues such as skin. The goal of this study was to prove that the real impact of paclitaxel-induced skin toxicity could be underestimated because the adverse events might appear asymptomatic. Methods: Gynecological cancer patients were recruited. Skin parameters measurements were taken after three and six paclitaxel cycles. Measurements were conducted using specific probes which measure hydration, transepidermal water loss (TEWL), sebum, elasticity and firmness, erythema, roughness, smoothness, skin thickness, and desquamation levels. Further, a 3D epidermis model was incubated with paclitaxel to analyze gene and protein expression of aquaporin 3, collagen type 1, elastin, and fibronectin. Results: Paclitaxel induced alterations in the skin parameters with no visible clinical manifestations. Gynecological cancer patients under paclitaxel treatment had a decreas...
    Interstitial lung diseases (ILDs) comprise different fibrotic lung disorders characterized by cellular proliferation, interstitial inflammation, and fibrosis. The JAK/STAT molecular pathway is activated under the interaction of a broad... more
    Interstitial lung diseases (ILDs) comprise different fibrotic lung disorders characterized by cellular proliferation, interstitial inflammation, and fibrosis. The JAK/STAT molecular pathway is activated under the interaction of a broad number of profibrotic/pro-inflammatory cytokines, such as IL-6, IL-11, and IL-13, among others, which are increased in different ILDs. Similarly, several growth factors over-expressed in ILDs, such as platelet-derived growth factor (PDGF), transforming growth factor β1 (TGF-β1), and fibroblast growth factor (FGF) activate JAK/STAT by canonical or non-canonical pathways, which indicates a predominant role of JAK/STAT in ILDs. Between the different JAK/STAT isoforms, it appears that JAK2/STAT3 are predominant, initiating cellular changes observed in ILDs. This review analyzes the expression and distribution of different JAK/STAT isoforms in ILDs lung tissue and different cell types related to ILDs, such as lung fibroblasts and alveolar epithelial type I...
    Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and irreversible form of fibrotic interstitial lung disease. MUC1, a membrane-bound O-glycoprotein, is considered as oncogenic molecule by altering signaling... more
    Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and irreversible form of fibrotic interstitial lung disease. MUC1, a membrane-bound O-glycoprotein, is considered as oncogenic molecule by altering signaling pathways involved in cellular processes related to IPF. In previous studies we have observed an up-regulation of MUC1 and its phosphorylated forms in IPF lung tissue. However the exact participation of MUC1 in IPF is currently unknown. Objective: To analyze the mechanism of MUC1-induced lung fibrosis in different cellular and animal models of IPF. Methods: The intracellular mechanism of MUC1 was evaluated by western blot, immunoprecipation and immunofluorescence in alveolar type II A549 and fibroblast MRC5, and IPF primary alveolar type II epithelial cells and lung fibroblasts. Cells were stimulated with TGFβ1. Lung tissue from human healthy/IPF and bleomycin-induced IPF mice wild type/ knockout MUC1 (KO-MUC1) was analyzed to explore MUC1 intracellular interactions by immunofluorescence. Results: Western blot indicated that TGFβ1 activated β-catenin and p-Smad2/3, which phosphorylated and activated MUC1 cytoplasmic tail (CT) at 1224 and 1229 treonin and tirosin residues. Immunoprecipitation and immunofluorescence studies showed that the multi-protein complex among pSmad2/3, β-catenin and MUC1-CT migrated into the nucleus to activate fibrotic genes in human cells and human and animal lung tissue. Unlike wild type mice, KO-MUC1 mice were protected against IPF, improving lung function, survival and fibrotic lung tissue remodeling. Conclusions: MUC1-CT collaborates with TGFβ1 to induce IPF progression. Therefore, pharmacologic targeting of MUC1-CT may be a promising option for the treatment of IPF.