Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Peter Crowhurst

    Oceanic hotspot activity, generating large oceanic igneous plateau provinces, plate rearrangements and the generation of new spreading centers since at least 90 Ma have formed large structural, thickness and density heterogeneities in the... more
    Oceanic hotspot activity, generating large oceanic igneous plateau provinces, plate rearrangements and the generation of new spreading centers since at least 90 Ma have formed large structural, thickness and density heterogeneities in the approaching and subducting oceanic crust offshore NW South America (SOAM). Various oceanic allochthonous terranes comprise western Ecuador and the relatively thick and buoyant Carnegie Ridge is being subducted. We present 40Ar/39Ar, fission track (FT) and (U-Th/He) data from i) the Eastern Cordillera and the Amotape Complex, which define the palaeo-continental margin, ii) the Western Cordillera, which is built upon allochthonous, oceanic crust and iii) a tectonic mélange at the ocean-continent suture. 40Ar/39Ar ages and FT data from exotic, Triassic blocks within the ocean-continent suture record elevated cooling rates of <=80oC/My, from temperatures of ˜540oC, during 85-80 Ma, which probably records the Late Cretaceous collision between oceanic plateau basalts and the continental margin. 40Ar/39Ar ages and FT data from the palaeo-continental margin show that the entire contemporaneous continental margin was being cooled by rapid tectonic exhumation (<= 2 km/My) during 70-55 Ma and 43-30 Ma. Tectonic reconstructions, combined with geochemical analyses, suggest that these periods of orogenesis were driven by stress imposed by the collision of terranes that originated at the Caribbean Plateau. Distinct periods of rapid cooling and exhumation of fault blocks in the W. Cordillera and the northern E. Cordillera occurred at ˜15 and ˜9 Ma. Cooling at ˜15 Ma was driven by the collision of the Carnegie Ridge with the trench at ˜15 Ma. The elevated, compressive stress field gave rise to a complex transcurrent system, resulting in uplift, exhumation and cooling in the northern E. Cordillera and extension in the southern E. Cordillera. Finally, FT and (U-Th)/He data record rapid cooling in the northern E. Cordillera and parts of the W. Cordillera at ˜6-5 Ma, suggesting that the middle Miocene transcurrent system was reactivated by thrust tectonics during the late Miocene, giving rise to the Interandean Valley, which split the topography of the orogen into two parallel belts. This synthesis suggests that terrane accretion and the subduction of buoyant and prominent relief on the sea floor have been the dominant driving forces for orogenesis in the northern Andes.
    The Energy Citations Database (ECD) provides access to historical and current research (1948 to the present) from the Department of Energy (DOE) and predecessor agencies.
    Between 22 April and 25 June 2009, a systematic search for hydrothermal venting along 1340 km of back-arc features was conducted throughout the Lau Basin aboard the CSIRO owned RV Southern Surveyor. The selection of survey areas was based... more
    Between 22 April and 25 June 2009, a systematic search for hydrothermal venting along 1340 km of back-arc features was conducted throughout the Lau Basin aboard the CSIRO owned RV Southern Surveyor. The selection of survey areas was based on bathymetry, sidescan and water column anomaly datasets collected during previous marine science research and commercial exploration voyages. During 54 operational