Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coa... more Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48h in wild-type mice but significantly less ...
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADAS... more Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in the NOTCH3 gene, most which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor-like repeats in the extracellular domain of Notch3 receptor (N3ECD). CADASIL is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we used proteomic analysis to characterize the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs, and cellular stress. Our findings indicate that misfolding of Notch3 may cause end...
Your browser version may not work well with NCBI's web applications. More information here..... more Your browser version may not work well with NCBI's web applications. More information here... ...
A new read-out method for antibody arrays using laser desorption ionisation mass spectrometry (LD... more A new read-out method for antibody arrays using laser desorption ionisation mass spectrometry (LDI-MS) is presented. Small, photocleavable reporter molecules with a defined mass called "mass tags" are used for detection of immunocaptured proteins from human plasma. Using prostate specific antigen (PSA), a biomarker for prostate cancer, as a model antigen a high sensitivity generic detection methodology based immunocapture with a primary antibody and detection with a biotin labelled secondary antibody coupled to mass tagged avidin is demonstrated. As each secondary antibody can bind several avidin molecules each having a large number of mass tags, signal amplification can be achieved. The developed PSA sandwich mass tag analysis method provided a limit of detection below 200 pg/mL (6 pM) for a 10 µL plasma sample, well below the clinically relevant cut-off value of 3-4 ng/mL. This brings the LOD for detection of intact antigens with MALDI-MS down to levels comparable with S...
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Jan 30, 2014
Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We invest... more Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. How...
Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies... more Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood encephalopathy.
Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, ch... more Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT...
The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precurso... more The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precursor protein gene causes an autosomal dominant disease with clinical picture of typical Alzheimer&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s disease. Here we report the special character of Arctic AD neuropathology in four deceased patients. Aβ deposition in the brains was wide-spread (Thal phase 5) and profuse. Virtually all parenchymal deposits were composed of non-fibrillar, Congo red negative Aβ aggregates. Congo red only stained angiopathic vessels. Mass spectrometric analyses showed that Aβ deposits contained variably truncated and modified wild type and mutated Aβ species. In three of four Arctic AD brains, most cerebral cortical plaques appeared targetoid with centres containing C-terminally (beyond aa 40) and variably N-terminally truncated Aβ surrounded by coronas immunopositive for Aβx-42. In the fourth patient plaque centres contained almost no Aβ making the plaques ring-shaped. The architectural pattern of plaques also varied between different anatomic regions. Tau pathology corresponded to Braak stage VI, and appeared mainly as delicate neuropil threads (NT) enriched within Aβ plaques. Dystrophic neurites were scarce, while neurofibrillary tangles were relatively common. Neuronal perikarya within the Aβ plaques appeared relatively intact. In Arctic AD brain differentially truncated abundant Aβ is deposited in plaques of variable numbers and shapes in different regions of the brain (including exceptional targetoid plaques in neocortex). The extracellular non-fibrillar Aβ does not seem to cause overt damage to adjacent neurons or to induce formation of neurofibrillary tangles, supporting the view that intracellular Aβ oligomers are more neurotoxic than extracellular Aβ deposits. However, the enrichment of NTs within plaques suggests some degree of intra-plaque axonal damage including accumulation of hp-tau, which may impair axoplasmic transport, and thereby contribute to synaptic loss. Finally, similarly as the cotton wool plaques in AD resulting from exon 9 deletion in the presenilin-1 gene, the Arctic plaques induced only modest glial and inflammatory tissue reaction.
Hantaviruses cause two severe diseases, haemorrhagic fever with renal syndrome in Eurasia and han... more Hantaviruses cause two severe diseases, haemorrhagic fever with renal syndrome in Eurasia and hantavirus pulmonary syndrome in the Americas. To understand more about the molecular mechanisms that lead to these diseases, the associations of Puumala virus nucleocapsid protein (PUUV-N) with cellular proteins were studied by yeast two-hybrid screening. Daxx, known as an apoptosis enhancer, was identified from a HeLa cDNA library and its interaction with PUUV-N was confirmed by GST pull-down assay, co-immunoprecipitation and co-localization studies. Furthermore, domains of interaction were mapped to the carboxyl-terminal region of 142 amino acids in Daxx and the carboxyl-terminal 57 residues in PUUV-N, respectively. In pepscan assays, the binding sites of Daxx to PUUV-N were mapped further to two lysine-rich regions, of which one overlaps the sequence of the predicted nuclear localization signal of Daxx. These data suggest a direct link between host cell machinery and a hantavirus struct...
Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coa... more Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48h in wild-type mice but significantly less ...
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADAS... more Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in the NOTCH3 gene, most which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor-like repeats in the extracellular domain of Notch3 receptor (N3ECD). CADASIL is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we used proteomic analysis to characterize the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs, and cellular stress. Our findings indicate that misfolding of Notch3 may cause end...
Your browser version may not work well with NCBI's web applications. More information here..... more Your browser version may not work well with NCBI's web applications. More information here... ...
A new read-out method for antibody arrays using laser desorption ionisation mass spectrometry (LD... more A new read-out method for antibody arrays using laser desorption ionisation mass spectrometry (LDI-MS) is presented. Small, photocleavable reporter molecules with a defined mass called "mass tags" are used for detection of immunocaptured proteins from human plasma. Using prostate specific antigen (PSA), a biomarker for prostate cancer, as a model antigen a high sensitivity generic detection methodology based immunocapture with a primary antibody and detection with a biotin labelled secondary antibody coupled to mass tagged avidin is demonstrated. As each secondary antibody can bind several avidin molecules each having a large number of mass tags, signal amplification can be achieved. The developed PSA sandwich mass tag analysis method provided a limit of detection below 200 pg/mL (6 pM) for a 10 µL plasma sample, well below the clinically relevant cut-off value of 3-4 ng/mL. This brings the LOD for detection of intact antigens with MALDI-MS down to levels comparable with S...
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Jan 30, 2014
Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We invest... more Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. How...
Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies... more Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood encephalopathy.
Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, ch... more Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT...
The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precurso... more The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precursor protein gene causes an autosomal dominant disease with clinical picture of typical Alzheimer&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s disease. Here we report the special character of Arctic AD neuropathology in four deceased patients. Aβ deposition in the brains was wide-spread (Thal phase 5) and profuse. Virtually all parenchymal deposits were composed of non-fibrillar, Congo red negative Aβ aggregates. Congo red only stained angiopathic vessels. Mass spectrometric analyses showed that Aβ deposits contained variably truncated and modified wild type and mutated Aβ species. In three of four Arctic AD brains, most cerebral cortical plaques appeared targetoid with centres containing C-terminally (beyond aa 40) and variably N-terminally truncated Aβ surrounded by coronas immunopositive for Aβx-42. In the fourth patient plaque centres contained almost no Aβ making the plaques ring-shaped. The architectural pattern of plaques also varied between different anatomic regions. Tau pathology corresponded to Braak stage VI, and appeared mainly as delicate neuropil threads (NT) enriched within Aβ plaques. Dystrophic neurites were scarce, while neurofibrillary tangles were relatively common. Neuronal perikarya within the Aβ plaques appeared relatively intact. In Arctic AD brain differentially truncated abundant Aβ is deposited in plaques of variable numbers and shapes in different regions of the brain (including exceptional targetoid plaques in neocortex). The extracellular non-fibrillar Aβ does not seem to cause overt damage to adjacent neurons or to induce formation of neurofibrillary tangles, supporting the view that intracellular Aβ oligomers are more neurotoxic than extracellular Aβ deposits. However, the enrichment of NTs within plaques suggests some degree of intra-plaque axonal damage including accumulation of hp-tau, which may impair axoplasmic transport, and thereby contribute to synaptic loss. Finally, similarly as the cotton wool plaques in AD resulting from exon 9 deletion in the presenilin-1 gene, the Arctic plaques induced only modest glial and inflammatory tissue reaction.
Hantaviruses cause two severe diseases, haemorrhagic fever with renal syndrome in Eurasia and han... more Hantaviruses cause two severe diseases, haemorrhagic fever with renal syndrome in Eurasia and hantavirus pulmonary syndrome in the Americas. To understand more about the molecular mechanisms that lead to these diseases, the associations of Puumala virus nucleocapsid protein (PUUV-N) with cellular proteins were studied by yeast two-hybrid screening. Daxx, known as an apoptosis enhancer, was identified from a HeLa cDNA library and its interaction with PUUV-N was confirmed by GST pull-down assay, co-immunoprecipitation and co-localization studies. Furthermore, domains of interaction were mapped to the carboxyl-terminal region of 142 amino acids in Daxx and the carboxyl-terminal 57 residues in PUUV-N, respectively. In pepscan assays, the binding sites of Daxx to PUUV-N were mapped further to two lysine-rich regions, of which one overlaps the sequence of the predicted nuclear localization signal of Daxx. These data suggest a direct link between host cell machinery and a hantavirus struct...
Uploads
Papers by Rabah Soliymani