Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Robert Gourlay

    Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65))... more
    Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specific...
    Synaptic vesicle protein 2 (SV2) is a component of all synaptic vesicles that is required for normal neurotransmission. Here we report that in intact synaptic terminals SV2 is a phosphoprotein. Phosphopeptide mapping studies indicate that... more
    Synaptic vesicle protein 2 (SV2) is a component of all synaptic vesicles that is required for normal neurotransmission. Here we report that in intact synaptic terminals SV2 is a phosphoprotein. Phosphopeptide mapping studies indicate that a major site of phosphorylation is located on the cytoplasmic amino terminus. SV2 is phosphorylated on serine and threonine but not on tyrosine residues, indicating that it is a substrate for serine/threonine kinases. Phosphopeptide mapping, in gel kinase assays, and surveys of kinase inhibitors suggest that casein kinase I is a primary SV2 kinase. The amino terminus of SV2 was previously shown to mediate its interaction with synaptotagmin, a calcium-binding protein also required for normal neurotransmission. Comparison of synaptotagmin binding with phosphorylated and unphosphorylated SV2 amino-terminal peptides reveals an increase in binding with phosphorylation. These results suggest that the affinity of SV2 for synaptotagmin is modulated by phosphorylation of SV2.
    TANK-binding kinase (TBK1) is essential for transcription of the interferon (IFN) β gene in response to lipopolysaccharide (LPS) and double-stranded RNA, but the molecular mechanisms that underlie the activation of TBK1 are incompletely... more
    TANK-binding kinase (TBK1) is essential for transcription of the interferon (IFN) β gene in response to lipopolysaccharide (LPS) and double-stranded RNA, but the molecular mechanisms that underlie the activation of TBK1 are incompletely understood. Previously, we identified the NF-κB essential modulator (NEMO)-related polyubiquitin-binding protein, optineurin (OPTN), as a novel binding partner of TBK1. To determine whether the ubiquitin-binding function of OPTN is involved in regulating TBK1 and IFNβ production, we generated a mouse in which wild-type optineurin was replaced by the polyubiquitin binding-defective mutant, OPTN(D477N/D477N). In this study, we found that LPS or poly(I:C)-induced TBK1 activity was significantly reduced in bone marrow-derived macrophage (BMDM) from OPTN(D477N/D477N) mice. Consistent with this, the phosphorylation of IFN regulatory factor 3 (IRF3) and the production of IFNβ mRNA and secretion were reduced. Stimulation of BMDMs with LPS triggered the phosphorylation of OPTN, which was reversed by phosphatase treatment and prevented by pharmacological inhibition of both the canonical IκB kinases (IKKα/β) and the IKK-related kinases (TBK1/IKKε). In contrast, LPS-stimulated phosphorylation of OPTN(D477N) was markedly reduced in BMDMs from OPTN(D477N/D477N) mice, and inhibition of the canonical IKKs alone prevented phosphorylation, providing further evidence that ubiquitin binding to OPTN contributes to LPS-induced TBK1 activation. TBK1 and IKKβ phosphorylated OPTN preferentially at Ser-177 and Ser-513, respectively, in vitro. In conclusion, our results suggest that OPTN binds to polyubiquitylated species formed in response to LPS and poly(I:C), enhancing the activation of TBK1 that is required for optimal phosphorylation of IRF3 and production of IFNβ.
    The deubiquitylating enzyme OTUB1 is present in all tissues and targets many substrates, in both the cytosol and nucleus. We found that casein kinase 2 (CK2) phosphorylated OTUB1 at Ser(16) to promote its nuclear accumulation in cells.... more
    The deubiquitylating enzyme OTUB1 is present in all tissues and targets many substrates, in both the cytosol and nucleus. We found that casein kinase 2 (CK2) phosphorylated OTUB1 at Ser(16) to promote its nuclear accumulation in cells. Pharmacological inhibition or genetic ablation of CK2 blocked the phosphorylation of OTUB1 at Ser(16), causing its nuclear exclusion in various cell types. Whereas we detected unphosphorylated OTUB1 mainly in the cytosol, we detected Ser(16)-phosphorylated OTUB1 only in the nucleus. In vitro, Ser(16)-phosphorylated OTUB1 and nonphosphorylated OTUB1 exhibited similar catalytic activity, bound K63-linked ubiquitin chains, and interacted with the E2 enzyme UBE2N. CK2-mediated phosphorylation and subsequent nuclear localization of OTUB1 promoted the formation of 53BP1 (p53-binding protein 1) DNA repair foci in the nucleus of osteosarcoma cells exposed to ionizing radiation. Our findings indicate that the activity of CK2 is necessary for the nuclear transl...
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in... more
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insul...
    Reproducible, comprehensive phosphopeptide enrichment is essential for studying phosphorylation-regulated processes. Here, we describe the application of hyper-porous magnetic TiO2 and Ti-IMAC microspheres for uniform automated... more
    Reproducible, comprehensive phosphopeptide enrichment is essential for studying phosphorylation-regulated processes. Here, we describe the application of hyper-porous magnetic TiO2 and Ti-IMAC microspheres for uniform automated phosphopeptide enrichment. Combining magnetic microspheres with a magnetic particle-handling robot enables rapid (45 min), reproducible (r2 ≥ 0.80) and high-fidelity (>90% purity) phosphopeptide purification in a 96-well format. Automated phosphopeptide enrichment demonstrates reproducible synthetic phosphopeptide recovery across 2 orders of magnitude, "well-to-well" quantitative reproducibility indistinguishable to internal SILAC standards, and robust "plate-to-plate" reproducibility across 5 days of independent enrichments. As a result, automated phosphopeptide enrichment enables statistical analysis of label-free phosphoproteomic samples in a high-throughput manner. This technique uses commercially available, off-the-shelf components and can be easily adopted by any laboratory interested in phosphoproteomic analysis. We provide a free downloadable automated phosphopeptide enrichment program to facilitate uniform interlaboratory collaboration and exchange of phosphoproteomic data sets.
    Synaptic vesicle protein 2A (SV2A) is a ubiquitous component of synaptic vesicles (SVs). It has roles in both SV trafficking and neurotransmitter release. We demonstrate that Casein kinase 1 family members, including isoforms of... more
    Synaptic vesicle protein 2A (SV2A) is a ubiquitous component of synaptic vesicles (SVs). It has roles in both SV trafficking and neurotransmitter release. We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1. We show by crystallographic and other analyses that the phosphorylated Thr84 residue binds to a pocket formed by three conserved Lys residues (Lys314, Lys326, and Lys328) on the surface of the synaptotagmin-1 C2B domain. Finally, we observed dysfunctional synaptotagmin-1 retrieval during SV endocytosis by ablating its phospho-dependent interaction with SV2A, knockdown of SV2A, or rescue with a ph...
    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets... more
    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets for PtdIns(3,4)P(2) have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P(2). A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P(2) selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain.
    It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana.... more
    It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/β-tubulin and is retained on GTP/taxol stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with likely having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between prote...
    The identification of phosphorylation state-dependent interacting proteins provides clues as to the function of the phosphorylation. Techniques such as yeast two hybrid and co-immunoprecipitation do not employ a single species of fully... more
    The identification of phosphorylation state-dependent interacting proteins provides clues as to the function of the phosphorylation. Techniques such as yeast two hybrid and co-immunoprecipitation do not employ a single species of fully phosphorylated proteins. This is a particular problem for substrates of glycogen synthase kinase-3 (GSK3), where multiple Ser/Thr residues can be targeted, almost always subsequent to a priming phosphorylation by an alternative kinase. We previously identified the brain enriched collapsin response mediator proteins (CRMP2 and CRMP4) as physiological substrates of GSK3. Cdk5 phosphorylates CRMP2 at Ser522, priming for subsequent phosphorylation at three residues by GSK3 in vitro and in vivo. It is clear that phosphorylation of CRMP2 influences axonal growth; however, the molecular processes underlying this action are not fully established. In addition, the role of phosphorylation in other actions of CRMPs has not been elucidated. We developed a novel procedure to isolate CRMP2 and CRMP4 fully phosphorylated at four sites, namely, Ser522 (by CDK5), Ser518, Thr514, and Thr509 (by GSK3). These phosphoproteins were then used to identify binding partners in rat brain lysates in direct comparison with the non-phosphorylated isoforms. We validated the approach by confirming that a previously reported interaction with tubulin-beta is regulated by phosphorylation. We also show that CRMPs (CRMP1, CRMP2, and CRMP4) form heteromers and found that these complexes may also be regulated by phosphorylation. We identified DYRK and Pin1 as novel CRMP4 binding proteins with DYRK interacting preferentially with dephospho-CRMP4 and Pin1 with phospho-CRMP4. Finally, we used this approach to identify the mitochondrial protein ANT as a novel CRMP2 and CRMP4 binding protein. We believe that this approach could be applied generally to the study of phosphorylation-dependent interactions.