To determine the anatomical organization and somatic axonal components of the lumbosacral nerves ... more To determine the anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. Chinchilla adult anesthetized female rabbits were used. Anatomical, electrophysiological, and histological studies were performed. L7, S1, and some fibers from S2 and S3 form the lumbosacral trunk, which gives origin to the sciatic nerve and innervation to the gluteal region. From S2 to S3 originates the pudendal nerve, whose branches innervates the striated anal and urethra sphincters, as well as the bulbospongiosus, ischiocavernosus, and constrictor vulvae muscles. The sensory field of the pudendal nerve is ∼1800 mm(2) and is localized in the clitoral sheath and perineal and perigenital skin. The organization of the pudendal nerve varies between individuals, three patterns were identified, and one of them was present in 50% of the animals. From S3 emerge the pelvic nerve, which anastomoses to form a plexus localized between the vagina and the rectum. The innervation of the pelvic floor originates from S3 to S4 fibers. Most of the sacral spinal nerves of rabbit are mixed, carrying sensory, and motor information. Sacral nerves innervate the hind limbs, pelvic viscera, clitoris, perineal muscles, inguinal and anal glands and perineal, perigenital, and rump skin. The detailed description of the sacral nerves organization, topography, and axonal components further the knowledge of the innervation in pelvic and perinal structures of the female rabbit. This information will be useful in future studies about the physiology and physiopathology of urinary, fecal, reproductive, and sexual functions.
The role of the pelvic nerve branches in the mediation of copulatory behavior was investigated. T... more The role of the pelvic nerve branches in the mediation of copulatory behavior was investigated. The somatomotor or the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned in sexually experienced male rats. Somatomotor branch surgery had no detectable effect. Viscerocutaneous branch transection altered copulatory parameters that reflect impairments in penile erection and seminal plug emission. The altered behavioral parameters approached or reached presurgical and sham values 21 days after transection, indicating that the damage to erectile and ejaculatory function was transient. It is suggested that animals with viscerocutaneous branch transection recover copulatory efficiency through a compensatory plastic mechanism, possibly involving the hypogastric nerve.
... AI Pichardo et al. ... Authors are grateful to Patricia Padilla Cortés, Jesús Ramírez Santos,... more ... AI Pichardo et al. ... Authors are grateful to Patricia Padilla Cortés, Jesús Ramírez Santos, Luz Lilia Jiménez, Rico, Georgina Díaz Herrera, Alfonso Malagón Mendiola, Raymundo Reyes and Marta Carrasco for their valuable technical ... [1] Pfaus, JG, Kippin, TE and Centeno, S. (2001 ...
Despite the importance of rabbits in reproductive studies, little information is available on the... more Despite the importance of rabbits in reproductive studies, little information is available on the anatomy and participation of the striated-perineal muscles in male copulatory behavior. In our study, we describe the gross anatomy of two striated-perineal muscles: the ischiocavernosus (ICm) and the bulbospongiosus (BSm). Both muscles have their origin at the ischiadic arc, but the ICm is inserted into the penile crura and the BSm onto the ligamentum suspensorium of the penis. The motoneurons of both muscles were identified using retrograde labeling with horseradish peroxidase coupled to wheat-germ agglutinin. Motoneurons were dispersed in the lower-lumbar and upper-sacral spinal-cord segments, instead of being aggregated in the neuronal nucleus as in other species: the rat, mouse, gerbil, cat, and man. Bilateral dennervation of the ICm or BSm or both in sexually experienced male rabbits did not affect copulatory variables measured at 10, 20, and 30 days after surgery. However, muscular dennervation produced extravaginal ejaculations in 42% of copulatory tests and no ejaculation in 7% of tests, although male pelvic thrusting occurred. These results suggest the participation of the ICm and BSm perineal muscles in penile orientation during copulation but not in seminal emission as described in other mammalian species.
Sexual behavior declines with age in male rats. The rate and magnitude of this decline may depend... more Sexual behavior declines with age in male rats. The rate and magnitude of this decline may depend on the amount of prior sexual experience and a number of other, unidentified factors. Age-dependent changes in the characteristics of ejaculate quality in rats have not been described earlier, and the relationship between such changes and modifications of sexual behavior is likewise unknown. We have recently developed a technique for the detailed analysis of parameters of ejaculate in rats, and this technique was used for the determination of semen and seminal plug characteristics in rats of different ages. Sexually experienced Wistar rats were tested for sex behavior at the ages of 3, 12 and 24 months. Semen was obtained from the female partner immediately after ejaculation at these tests. Between tests, the males were offered the opportunity to copulate once every 3-4 weeks. The behavioral data showed that the latency to ejaculation was increased only at 24 months. Concerning the characteristics of semen, there was a substantial increase in the proportion of immobile spermatozoa and motility of those moving was much reduced, both at 12 and 24 months of age. There was no relationship between parameters of sexual behavior and those of the ejaculate. Likewise, the size of the seminal plug did not affect the amount of intrauterine spermatozoa. The reduced sperm number together with the increased sperm immobility diminishes the ejaculate quality of old males, which could influence fertility.
Sexually satiated males cease copulating after several ejaculations with the same female; and the... more Sexually satiated males cease copulating after several ejaculations with the same female; and the presence of an unknown receptive female renews copulation including ejaculation, a process named the Coolidge effect. It is believed that the Coolidge effect has the aim to impregnate another female, although it is known that the sperm count gradually decreases after consecutive ejaculations. The main goal was to investigate if sexually satiated males during the Coolidge effect can reestablish seminal expulsion associated to the ejaculation behavior and/or penile erection associated to the intromission behavior. The results show that during the Coolidge effect, most of the sexually satiated males showed the motor ejaculatory behavior, however, no sperm in the uterine horns or seminal plug in the vagina were detected. Such lack of sperm was not related with the number of ejaculations required to achieve sexual satiety nor with the number of intromissions needed for ejaculating (experiment 1: 2.4.1.). After the behavioral ejaculation, during the Coolidge effect, there was a 44% decrease in sperm count in the epididymal caudae (experiment 1: 2.4.2.). Males that mated for 8 behavioral ejaculations (close to sexual satiety) deposited tiny seminal plugs but no sperm in the female reproductive tract (experiment 1: 2.4.3.). Interestingly, sexually satiated and non-satiated-animals displayed similar number of intromissions and spent a similar time in dislodging the seminal plug from the vagina deposited by other males (experiment 2). These results suggest that sexually satiated males during the Coolidge effect have the capacity for penile erection and vaginal insertion, because they are able to dislodge seminal plugs; but are unable to expel seminal fluid, because neither form seminal plugs nor deposit sperm in the female genital tract.
In mammals the mechanisms underlying female sexual and reproductive biology are poorly understood... more In mammals the mechanisms underlying female sexual and reproductive biology are poorly understood. Little attention has been paid to striated muscles and their neural regulation. The aim of the present study was to describe the components of the vaginocavernosus reflex in adult rabbits. It was found that mechanical stimulation of the glans of the clitoris and the perineal vagina induced electromyographic (EMG) responses in bulbocavernosus (Bcm) and ischiocavernosus (Icm) muscles. Unilateral and bilateral nerve transection indicated that the clitoral nerve is the main afferent path of the reflex and that it recruits ipsilateral and contralateral perineal motoneurons. Injection of horseradish peroxides-wheat germ agglutinin (HRP-WGA) into the Bcm and Icm labeled spinal motoneurons scattered in L7 and S1 segments. According to the results of this study and previous work, the elements of the vaginocavernosus reflex may be described as follows. Mechanical receptors are located in the glans clitoris and in the wall of the perineal vagina. The main afferent pathway is the clitoral nerve. It activates ipsilateral and contralateral Bcm and Icm motoneurons in lumbosacral segments. Axons of efferent neurons travel through the clitoral and ischiocavernosus nerves, and the effectors are the Bcm and Icm perineal muscles. Identification of neural components of the vaginocavernosus reflex in rabbits will allow the use of this animal as a model to assess the physiological characteristics of the perineal motoneurons as well as the contribution of the Bcm and Icm in female urogenital functions.
ABSTRACT The rat prostate comprises dorsal, ventral and lateral lobes that are morphologically an... more ABSTRACT The rat prostate comprises dorsal, ventral and lateral lobes that are morphologically and biochemically distinct. Lesions to these structures are expected to affect the quality of the ejaculate and male fertility. In experiment 1, we analyzed ejaculate parameters of males that had chemical lesions of the dorsal or ventral lobes. At pre-lesion and at 5 and 20 days post-lesion males were mated, and after ejaculation, seminal fluid and seminal plug were obtained from the mated females. In experiment 2, the ventral lobes were ablated, and the ejaculate was analyzed. In experiment 3, the fertility of males with chemically-lesioned dorsal lobes or ablation of the ventral lobes was evaluated. Chemical lesion of the dorsal lobe prevented the adhesion of the seminal plug to vaginal walls. When these males were tested at 5-days postlesion, no sperm were found in uterus, and at 20-days post-lesion, the few sperm encountered showed slow progressive motility. None of the females that mated with dorsal lobe-lesioned males became pregnant. However, chemical lesion or ablation of the ventral lobes did not affect ejaculate or fertility. Our results indicate that the dorsal prostatic lobes are indispensable for reproductive success in males, and define parameters of ejaculate with which fertility can be estimated.
Here we describe the nerves innervating the perineal skin together with their sensory fields in t... more Here we describe the nerves innervating the perineal skin together with their sensory fields in the adult female rat. Electrophysiological recording showed that the lumbosacral and L6-S1 trunks, in part by way of the sacral plexus, transmit sensory information from the perineal skin via four nerves: the viscerocutaneous branch of the pelvic nerve innervating the skin at the midline between the vaginal opening and anus, the sensory branch of the pudendal nerve innervating the clitoral sheath, the distal perineal branch of the pudendal nerve innervating a broad area of skin adjacent to the vaginal opening and anus, and the proximal perineal branch of the sacral plexus innervating a broad area of skin adjacent to the clitoris and vaginal opening. The sensory fields of three of these nerves overlapped to some degree: the viscerocutaneous branch of the pelvic and the distal perineal branch of the pudendal nerves at the midline skin between the vaginal opening and the anus, and the distal perineal branch of the pudendal nerve and the proximal perineal branch of the sacral plexus at the skin lateral to the vaginal opening. Such overlap might provide a safeguard helping to ensure that somatosensory input from the perineal region important for triggering reproductive and nonreproductive reflexes reaches the CNS.
Although the rabbit (Oryctolagus cuniculus) continues to play an important role in the study of p... more Although the rabbit (Oryctolagus cuniculus) continues to play an important role in the study of parturitional processes, a detailed behavioral description of birth in this species, necessary for accurately assessing the effects of experimental manipulation, is lacking. It is the aim of this report to provide such a description and to compare it with corresponding behavior in the better-studied rat.
To determine the anatomical organization and somatic axonal components of the lumbosacral nerves ... more To determine the anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. Chinchilla adult anesthetized female rabbits were used. Anatomical, electrophysiological, and histological studies were performed. L7, S1, and some fibers from S2 and S3 form the lumbosacral trunk, which gives origin to the sciatic nerve and innervation to the gluteal region. From S2 to S3 originates the pudendal nerve, whose branches innervates the striated anal and urethra sphincters, as well as the bulbospongiosus, ischiocavernosus, and constrictor vulvae muscles. The sensory field of the pudendal nerve is ∼1800 mm(2) and is localized in the clitoral sheath and perineal and perigenital skin. The organization of the pudendal nerve varies between individuals, three patterns were identified, and one of them was present in 50% of the animals. From S3 emerge the pelvic nerve, which anastomoses to form a plexus localized between the vagina and the rectum. The innervation of the pelvic floor originates from S3 to S4 fibers. Most of the sacral spinal nerves of rabbit are mixed, carrying sensory, and motor information. Sacral nerves innervate the hind limbs, pelvic viscera, clitoris, perineal muscles, inguinal and anal glands and perineal, perigenital, and rump skin. The detailed description of the sacral nerves organization, topography, and axonal components further the knowledge of the innervation in pelvic and perinal structures of the female rabbit. This information will be useful in future studies about the physiology and physiopathology of urinary, fecal, reproductive, and sexual functions.
The role of the pelvic nerve branches in the mediation of copulatory behavior was investigated. T... more The role of the pelvic nerve branches in the mediation of copulatory behavior was investigated. The somatomotor or the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned in sexually experienced male rats. Somatomotor branch surgery had no detectable effect. Viscerocutaneous branch transection altered copulatory parameters that reflect impairments in penile erection and seminal plug emission. The altered behavioral parameters approached or reached presurgical and sham values 21 days after transection, indicating that the damage to erectile and ejaculatory function was transient. It is suggested that animals with viscerocutaneous branch transection recover copulatory efficiency through a compensatory plastic mechanism, possibly involving the hypogastric nerve.
... AI Pichardo et al. ... Authors are grateful to Patricia Padilla Cortés, Jesús Ramírez Santos,... more ... AI Pichardo et al. ... Authors are grateful to Patricia Padilla Cortés, Jesús Ramírez Santos, Luz Lilia Jiménez, Rico, Georgina Díaz Herrera, Alfonso Malagón Mendiola, Raymundo Reyes and Marta Carrasco for their valuable technical ... [1] Pfaus, JG, Kippin, TE and Centeno, S. (2001 ...
Despite the importance of rabbits in reproductive studies, little information is available on the... more Despite the importance of rabbits in reproductive studies, little information is available on the anatomy and participation of the striated-perineal muscles in male copulatory behavior. In our study, we describe the gross anatomy of two striated-perineal muscles: the ischiocavernosus (ICm) and the bulbospongiosus (BSm). Both muscles have their origin at the ischiadic arc, but the ICm is inserted into the penile crura and the BSm onto the ligamentum suspensorium of the penis. The motoneurons of both muscles were identified using retrograde labeling with horseradish peroxidase coupled to wheat-germ agglutinin. Motoneurons were dispersed in the lower-lumbar and upper-sacral spinal-cord segments, instead of being aggregated in the neuronal nucleus as in other species: the rat, mouse, gerbil, cat, and man. Bilateral dennervation of the ICm or BSm or both in sexually experienced male rabbits did not affect copulatory variables measured at 10, 20, and 30 days after surgery. However, muscular dennervation produced extravaginal ejaculations in 42% of copulatory tests and no ejaculation in 7% of tests, although male pelvic thrusting occurred. These results suggest the participation of the ICm and BSm perineal muscles in penile orientation during copulation but not in seminal emission as described in other mammalian species.
Sexual behavior declines with age in male rats. The rate and magnitude of this decline may depend... more Sexual behavior declines with age in male rats. The rate and magnitude of this decline may depend on the amount of prior sexual experience and a number of other, unidentified factors. Age-dependent changes in the characteristics of ejaculate quality in rats have not been described earlier, and the relationship between such changes and modifications of sexual behavior is likewise unknown. We have recently developed a technique for the detailed analysis of parameters of ejaculate in rats, and this technique was used for the determination of semen and seminal plug characteristics in rats of different ages. Sexually experienced Wistar rats were tested for sex behavior at the ages of 3, 12 and 24 months. Semen was obtained from the female partner immediately after ejaculation at these tests. Between tests, the males were offered the opportunity to copulate once every 3-4 weeks. The behavioral data showed that the latency to ejaculation was increased only at 24 months. Concerning the characteristics of semen, there was a substantial increase in the proportion of immobile spermatozoa and motility of those moving was much reduced, both at 12 and 24 months of age. There was no relationship between parameters of sexual behavior and those of the ejaculate. Likewise, the size of the seminal plug did not affect the amount of intrauterine spermatozoa. The reduced sperm number together with the increased sperm immobility diminishes the ejaculate quality of old males, which could influence fertility.
Sexually satiated males cease copulating after several ejaculations with the same female; and the... more Sexually satiated males cease copulating after several ejaculations with the same female; and the presence of an unknown receptive female renews copulation including ejaculation, a process named the Coolidge effect. It is believed that the Coolidge effect has the aim to impregnate another female, although it is known that the sperm count gradually decreases after consecutive ejaculations. The main goal was to investigate if sexually satiated males during the Coolidge effect can reestablish seminal expulsion associated to the ejaculation behavior and/or penile erection associated to the intromission behavior. The results show that during the Coolidge effect, most of the sexually satiated males showed the motor ejaculatory behavior, however, no sperm in the uterine horns or seminal plug in the vagina were detected. Such lack of sperm was not related with the number of ejaculations required to achieve sexual satiety nor with the number of intromissions needed for ejaculating (experiment 1: 2.4.1.). After the behavioral ejaculation, during the Coolidge effect, there was a 44% decrease in sperm count in the epididymal caudae (experiment 1: 2.4.2.). Males that mated for 8 behavioral ejaculations (close to sexual satiety) deposited tiny seminal plugs but no sperm in the female reproductive tract (experiment 1: 2.4.3.). Interestingly, sexually satiated and non-satiated-animals displayed similar number of intromissions and spent a similar time in dislodging the seminal plug from the vagina deposited by other males (experiment 2). These results suggest that sexually satiated males during the Coolidge effect have the capacity for penile erection and vaginal insertion, because they are able to dislodge seminal plugs; but are unable to expel seminal fluid, because neither form seminal plugs nor deposit sperm in the female genital tract.
In mammals the mechanisms underlying female sexual and reproductive biology are poorly understood... more In mammals the mechanisms underlying female sexual and reproductive biology are poorly understood. Little attention has been paid to striated muscles and their neural regulation. The aim of the present study was to describe the components of the vaginocavernosus reflex in adult rabbits. It was found that mechanical stimulation of the glans of the clitoris and the perineal vagina induced electromyographic (EMG) responses in bulbocavernosus (Bcm) and ischiocavernosus (Icm) muscles. Unilateral and bilateral nerve transection indicated that the clitoral nerve is the main afferent path of the reflex and that it recruits ipsilateral and contralateral perineal motoneurons. Injection of horseradish peroxides-wheat germ agglutinin (HRP-WGA) into the Bcm and Icm labeled spinal motoneurons scattered in L7 and S1 segments. According to the results of this study and previous work, the elements of the vaginocavernosus reflex may be described as follows. Mechanical receptors are located in the glans clitoris and in the wall of the perineal vagina. The main afferent pathway is the clitoral nerve. It activates ipsilateral and contralateral Bcm and Icm motoneurons in lumbosacral segments. Axons of efferent neurons travel through the clitoral and ischiocavernosus nerves, and the effectors are the Bcm and Icm perineal muscles. Identification of neural components of the vaginocavernosus reflex in rabbits will allow the use of this animal as a model to assess the physiological characteristics of the perineal motoneurons as well as the contribution of the Bcm and Icm in female urogenital functions.
ABSTRACT The rat prostate comprises dorsal, ventral and lateral lobes that are morphologically an... more ABSTRACT The rat prostate comprises dorsal, ventral and lateral lobes that are morphologically and biochemically distinct. Lesions to these structures are expected to affect the quality of the ejaculate and male fertility. In experiment 1, we analyzed ejaculate parameters of males that had chemical lesions of the dorsal or ventral lobes. At pre-lesion and at 5 and 20 days post-lesion males were mated, and after ejaculation, seminal fluid and seminal plug were obtained from the mated females. In experiment 2, the ventral lobes were ablated, and the ejaculate was analyzed. In experiment 3, the fertility of males with chemically-lesioned dorsal lobes or ablation of the ventral lobes was evaluated. Chemical lesion of the dorsal lobe prevented the adhesion of the seminal plug to vaginal walls. When these males were tested at 5-days postlesion, no sperm were found in uterus, and at 20-days post-lesion, the few sperm encountered showed slow progressive motility. None of the females that mated with dorsal lobe-lesioned males became pregnant. However, chemical lesion or ablation of the ventral lobes did not affect ejaculate or fertility. Our results indicate that the dorsal prostatic lobes are indispensable for reproductive success in males, and define parameters of ejaculate with which fertility can be estimated.
Here we describe the nerves innervating the perineal skin together with their sensory fields in t... more Here we describe the nerves innervating the perineal skin together with their sensory fields in the adult female rat. Electrophysiological recording showed that the lumbosacral and L6-S1 trunks, in part by way of the sacral plexus, transmit sensory information from the perineal skin via four nerves: the viscerocutaneous branch of the pelvic nerve innervating the skin at the midline between the vaginal opening and anus, the sensory branch of the pudendal nerve innervating the clitoral sheath, the distal perineal branch of the pudendal nerve innervating a broad area of skin adjacent to the vaginal opening and anus, and the proximal perineal branch of the sacral plexus innervating a broad area of skin adjacent to the clitoris and vaginal opening. The sensory fields of three of these nerves overlapped to some degree: the viscerocutaneous branch of the pelvic and the distal perineal branch of the pudendal nerves at the midline skin between the vaginal opening and the anus, and the distal perineal branch of the pudendal nerve and the proximal perineal branch of the sacral plexus at the skin lateral to the vaginal opening. Such overlap might provide a safeguard helping to ensure that somatosensory input from the perineal region important for triggering reproductive and nonreproductive reflexes reaches the CNS.
Although the rabbit (Oryctolagus cuniculus) continues to play an important role in the study of p... more Although the rabbit (Oryctolagus cuniculus) continues to play an important role in the study of parturitional processes, a detailed behavioral description of birth in this species, necessary for accurately assessing the effects of experimental manipulation, is lacking. It is the aim of this report to provide such a description and to compare it with corresponding behavior in the better-studied rat.
Uploads
Papers by Rosa Lucio