Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
S. Aboglila

    S. Aboglila

    Drill cutting samples (n = 92) from the Devonian Awaynat Wanin Formation and Silurian Tanezzuft Formation, sampled from three wells F1, G1 and H1, locate in the northern edge of the Murzuq basin (approximately 700 kilometers south of... more
    Drill cutting samples (n = 92) from the Devonian Awaynat Wanin Formation and Silurian Tanezzuft Formation, sampled from three wells F1, G1 and H1, locate in the northern edge of the Murzuq basin (approximately 700 kilometers south of Tripoli). The studied samples were analyzed in the objective of their organic geochemical assessment such as the type of organic matter, depositional conditions and thermal maturity level. A bulk geochemical parameters and precise biomarkers were estimated, using chromatography-mass spectrometry (GC-MS) to reveal a diversity of their geochemical characterizations. The rock formations are having varied organic matter contents, ranged from fair to excellent. The total organic carbon (TOC) reached about 9.1 wt%, ranging from 0.6 to 2.93 wt% (Awaynat Wanin), 0.5 to 2.54 wt% (Tanezzuft) and 0.52 to 9.1 wt% (Hot Shale). The cutting samples are ranged oil-prone organic matter (OM) of hydrogen index (HI) ranged between 98-396 mg HC/g TOC, related kerogen types are type II and II/III, with oxygen index (OI): 6-190 with one sample have value of 366 mg CO2/g. Thermal maturity of these source rocks is different, ranging from immature to mature and oil window in the most of Tanezzuft Formation and Hot Shale samples, as reflected from the production index data (PI: 0.08-034). Tmax and vitrinite reflectance Ro% data (Tmax: 435-454 & Ro%: 0.46-1.38) for the Awaynat Wanin. Biomarker ratios of specific hydrocarbons extracted from represented samples (n = 9), were moreover used to study thermal maturity level and depositional environments. Pristine/Phytane (Pr/Ph) ratios of 1.65-2.23 indicated anoxic to suboxic conditions of depositional marine shale and lacustrine source rock.
    This search aims to apply developed geochemical methods to a number of oils and source rock extracts to better establish the features of ancient environments that occurred in the Murzuq basin. Geochemical and geophysical approaches were... more
    This search aims to apply developed geochemical methods to a number of oils and source rock extracts to better establish the features of ancient environments that occurred in the Murzuq basin. Geochemical and geophysical approaches were used to confirm further a source contribution from other Paleozoic formations to hydrocarbon accumulations in the basin. One hundred and forty rock units were collected from B1-NC151, D1-NC174, A1-NC 76, D1-NC 151, F1-NC58, A1-NC 186, P1-NC 101, D1-NC 58, H1-NC58 and A1-NC58 wells. Seven crude oils were collocated A1-NC186, B1-NC186, E2-NC101, F3-NC174, A10-NC115, B10-NC115 and H10-NC115 wells. A geochemical assessment of the studied rocks and oils was done by means of geochemical parameters of total organic carbon (TOC), Rock-Eval analysis, detailed-various biomarkers and stable carbon isotope. The TOC values from B1-NC151 range 0.40% to 8.5%, A1-NC186 0.3% and 1.45, A1-NC76 0.39% to 0.74%, D1-NC151 0.40% to 2.00% to F1-NC58 0.40% to 1.12%. D1_NC174 0.30% to 10 %, P1-NC101 0.80% to 1.35%, D1-NC58 0.5% to 1.10%, H1-NC58 0.20% to 3.50%, A1-NC58 0.40% to 1.60%. The categories of organic matter from rock-eval pyrolysis statistics point to that type II kerogen is the main type, in association with type III, and no of type I kerogen recognized. Vitrinite reflectance (%Ro), Tmax and Spore colour index (SCI) as thermal maturity parameters reflect that the measured rock units are have different maturation levels, ranging from immature to mature sources. acritarchs distribution for most samples could be recognized and Palynomorphs are uncommon. Pristane to phytane ratios (> 1) revealed marine shale to lacustrine of environmental deposition. The Stable carbon isotope (δ 13 C) values of seven rock-extract samples are-30.98‰ and-29.14‰ of saturates and-29.86‰ to-28.37‰ aromatic fractions. The oil saturate hydrocarbon fractions range between-29.36‰ to-28.67‰ and aromatic are among-29.98 ‰ to-29.55 ‰. The δ 13 C data in both rock extractions and crude oils are closer to each other, typical in sign of Paleozoic age. It is clear that the base of Tanezzuft Formation (Hot shale) is considered the main source rocks. The Devonian Awaynat Wanin Formation as well locally holds sufficient oil prone kerogen to consider as potential source rocks. Ordovician Mamuniyat Formation shales may poorly contain oil prone kerogen to be addressed in future studies. An assessment of the correlations between the oils and potential source rocks and between the oils themselves indicated that most of the rocks extracts were broadly similar to most of the oils and supported by carbon stable isotope analysis results.
    This search aims to apply developed geochemical methods to a number of oils and source rock extracts to better establish the features of ancient environments that occurred in the Murzuq basin. Geochemical and geophysical approaches were... more
    This search aims to apply developed geochemical methods to a number of oils and source rock extracts to better establish the features of ancient environments that occurred in the Murzuq basin. Geochemical and geophysical approaches were used to confirm further a source contribution from other Paleozoic formations to hydrocarbon accumulations in the basin. One hundred and forty rock units were collected from B1-NC151, D1-NC174, A1-NC 76, D1-NC 151, F1-NC58, A1-NC 186, P1-NC 101, D1-NC 58, H1-NC58 and A1-NC58 wells. Seven crude oils were collocated A1-NC186, B1-NC186, E2-NC101, F3-NC174, A10-NC115, B10-NC115 and H10-NC115 wells. A geochemical assessment of the studied rocks and oils was done by means of geochemical parameters of total organic carbon (TOC), Rock-Eval analysis, detailed-various biomarkers and stable carbon isotope. The TOC values from B1-NC151 range 0.40% to 8.5%, A1-NC186 0.3% and 1.45, A1-NC76 0.39% to 0.74%, D1-NC151 0.40% to 2.00% to F1-NC58 0.40% to 1.12%. D1_NC174 0.30% to 10 %, P1-NC101 0.80% to 1.35%, D1-NC58 0.5% to 1.10%, H1-NC58 0.20% to 3.50%, A1-NC58 0.40% to 1.60%. The categories of organic matter from rock-eval pyrolysis statistics point to that type II kerogen is the main type, in association with type III, and no of type I kerogen recognized. Vitrinite reflectance (%Ro), Tmax and Spore colour index (SCI) as thermal maturity parameters reflect that the measured rock units are have different maturation levels, ranging from immature to mature sources. acritarchs distribution for most samples could be recognized and Palynomorphs are uncommon. Pristane to phytane ratios (> 1) revealed marine shale to lacustrine of environmental deposition. The Stable carbon isotope (δ 13 C) values of seven rock-extract samples are-30.98‰ and-29.14‰ of saturates and-29.86‰ to-28.37‰ aromatic fractions. The oil saturate hydrocarbon fractions range between-29.36‰ to-28.67‰ and aromatic are among-29.98 ‰ to-29.55 ‰. The δ 13 C data in both rock extractions and crude oils are closer to each other, typical in sign of Paleozoic age. It is clear that the base of Tanezzuft Formation (Hot shale) is considered the main source rocks. The Devonian Awaynat Wanin Formation as well locally holds sufficient oil prone kerogen to consider as potential source rocks. Ordovician Mamuniyat Formation shales may poorly contain oil prone kerogen to be addressed in future studies. An assessment of the correlations between the oils and potential source rocks and between the oils themselves indicated that most of the rocks extracts were broadly similar to most of the oils and supported by carbon stable isotope analysis results.
    This present paper includes a detailed evaluation of specific biomarkers together with stable carbon isotope (δ13C) by gas chromatography-mass spectrometry (GC–MS) and Gas Chromatograph–Isotope Ratio Mass Spectrometry (GC–IR–MS). Eight... more
    This present paper includes a detailed evaluation of specific biomarkers together with stable carbon isotope (δ13C) by gas chromatography-mass spectrometry (GC–MS) and Gas Chromatograph–Isotope Ratio Mass Spectrometry (GC–IR–MS). Eight crude oil samples were collected from the A, B, H (east) and H (west) Fields, located in the Murzuq Basin, Libya. Stable Carbon isotope data (δ13C) together with biomarker ratios data of individual hydrocarbons, n-alkanes, isoprenoids, terpenes, hopanes, steranes and aromatic have been determined in crude oils to delineate their bacterial degradation, source facies, organic matter precursors, depositional conditions and a variation of maturation. Based on source-specific parameters including n-C19 alkane, % C27S, %C28S, %C29S, %C23TT, %C30αβ, %rC28, DBT/P, CPI, Pr/Ph, Ts/Tm, dh 30/h 30, 1 MN, 2 MN,         26-27 DMN, 15 DMN, 236 TMN, 146-135 TMN, 125 TMN, 136 TMN ratios and δ13C‰ of saturates and aromatics fractions. Such oils showed non-biodegradatio...
    The present paper involves a detailed evaluation of specific steroid biomarkers by gas chromatography–mass spectrometry (GC–MS) and GC-metastable reaction monitoring (MRM) analyses of several crude oils and source rocks from the East... more
    The present paper involves a detailed evaluation of specific steroid biomarkers by gas chromatography–mass spectrometry (GC–MS) and GC-metastable reaction monitoring (MRM) analyses of several crude oils and source rocks from the East Sirte Basin. 24-Norcholestanes, dinosteranes, 4α-methyl-24-ethylcholestanes and triaromatic steroids have been identified in both source-rocks and crude oils of the East Sirte Basin. Diatoms, dinoflagellates (including those potentially associated with corals) and/or their direct ancestors are amongst the proposed sources of these biomarkers. These biomarker parameters have been used to establish a Mesozoic oil–source correlation of the East Sirte Basin. Hydropyrolysis of an extant coral extract revealed a similar distribution (although immature) of dinosteranes and 4α-methyl-24-ethylcholestanes also observed in the Sirte oils and source-rocks. This is consistent with the presence of dinoflagellates present during the deposition of the Mesozoic aged East Sirte Basin Formations.A good data correlation for the rock extracts revealed a similar distribution of 3,24-dimethyl triaromatic steroids, 3-methyl-24-ethylcholestanes, 4-methyl-24-ethylcholestanes and 2-methyl-24-ethylcholestanes observed in one of the oil families and associated source-rocks for the East Sirte Basin.► Analyses of biomarkers from diatoms and dinoflagellates. Oils and rocks come from the East Sirte Basin.
    The present paper involves a detailed evaluation of specific steroid biomarkers by gas chromatography–mass spectrometry (GC–MS) and GC-metastable reaction monitoring (MRM) analyses of several crude oils and source rocks from the East... more
    The present paper involves a detailed evaluation of specific steroid biomarkers by gas chromatography–mass spectrometry (GC–MS) and GC-metastable reaction monitoring (MRM) analyses of several crude oils and source rocks from the East Sirte Basin. 24-Norcholestanes, dinosteranes, 4α-methyl-24-ethylcholestanes and triaromatic steroids have been identified in both source-rocks and crude oils of the East Sirte Basin. Diatoms, dinoflagellates (including those potentially associated with corals) and/or their direct ...
    Biomarker ratios, together with stable carbon (δ13C) and hydrogen (δD) isotopic compositions of individual hydrocarbons have been determined in a suite of crude oils (n = 24) from the East Sirte Basin to delineate their sources and... more
    Biomarker ratios, together with stable carbon (δ13C) and hydrogen (δD) isotopic compositions of individual hydrocarbons have been determined in a suite of crude oils (n = 24) from the East Sirte Basin to delineate their sources and respective thermal maturity. The crude oil samples are divided into two main families (A and B) based on differences in source inputs and thermal maturity. Using source specific parameters including pristane/phytane (Pr/Ph), hopane/sterane, dibenzothiophene/phenanthrene (DBT/P), Pr/n-C17 and Ph/n-Cl8 ratios and the distributions of tricyclic and tetracyclic terpanes, family B oils are ascribed a marine source rock deposited under sub-oxic conditions, while family A oils have a more terrigenous source affinity. This genetic classification is supported by the stable carbon isotopic compositions (δ13C) of the n-alkanes. Using biomarker maturity parameters such as the abundance of Pr and Ph relative to n-alkanes and the distribution of sterane and hopane isomers, family A oils are shown to be more thermally mature than family B oils. The contrasting maturity of the two families is supported by differences between the stable hydrogen isotopic compositions (δD) of Pr and Ph and the n-alkanes, as well as the δ13C values of n-alkanes in their respective oils.