We have measured the activation by recombinant rhodopsin of the alpha-subunit (alpha 1) of retina... more We have measured the activation by recombinant rhodopsin of the alpha-subunit (alpha 1) of retinal transducin (Gt, also recombinant) using a new assay. Cultured cells are transiently transfected with DNAs encoding opsin and the three subunits of Gt (alpha t, beta 1 and gamma 1). In the microsomes of these cells, incubated with 11-cis-retinal, light causes the rapid activation of Gt, as measured by the ability of GTP gamma S to protect alpha t fragments from proteolytic degradation. The activation of Gt is also observed when all-trans-retinal is added to microsomes under constant illumination. Activation depends on both opsin and retinal. Opsin mutants with known defects in activating Gt show similar defects in this assay. alpha t mutations that mimic the corresponding mutations in the alpha-subunit of Gs also produce qualitatively similar effects in this assay. As a first step in a strategy aimed at exploring the relationships between structure and function in the interactions of re...
Proceedings of the National Academy of Sciences, 2001
and the corresponding mouse protein less the first two exons (617 residues). Expression of D-AKAP... more and the corresponding mouse protein less the first two exons (617 residues). Expression of D-AKAP2 was characterized by using mouse tissue extracts. Full-length D-AKAP2 from various tissues shows different molecular weights, possibly because of alternative splicing or posttranslational modifications. The cloned human gene product has a molecular weight similar to one of the prominent mouse proteins. In vivo association of D-AKAP2 with PKA in mouse brain was demonstrated by using cAMP agarose pull-down assay. Subcellular localization for endogenous mouse, rat, and human D-AKAP2 was determined by immunocytochemistry, immunohistochemistry, and tissue fractionation. D-AKAP2 from all three species is highly enriched in mitochondria. The mitochondrial localization and the presence of RGS domains in D-AKAP2 may have important implications for its function in PKA and G protein signal transduction.
Proceedings of the National Academy of Sciences, 2008
Phenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activit... more Phenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activity results in neurotoxic levels of phenylalanine. We used the Pah(enu2/enu2) PKU mouse model in short- and long-term studies of enzyme substitution therapy with PEGylated phenylalanine ammonia lyase (PEG-PAL conjugates) from 4 different species. The most therapeutically effective PAL (Av, Anabaena variabilis) species was one without the highest specific activity, but with the highest stability; indicating the importance of protein stability in the development of effective protein therapeutics. A PEG-Av-p.C503S/p.C565S-PAL effectively lowered phenylalanine levels in both vascular space and brain tissue over a >90 day trial period, resulting in reduced manifestations associated with PKU, including reversal of PKU-associated hypopigmentation and enhanced animal health. Phenylalanine reduction occurred in a dose- and loading-dependent manner, and PEGylation reduced the neutralizing immune response to the enzyme. Human clinical trials with PEG-Av-p.C503S/p.C565S-PAL as a treatment for PKU are underway.
The Journal of pharmacology and experimental therapeutics, 2015
Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosoma... more Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in ...
The catalytic subunit of cAMP-dependent protein kinase expressed in Escherichia coli is a phospho... more The catalytic subunit of cAMP-dependent protein kinase expressed in Escherichia coli is a phosphoprotein. By in vivo labeling with [32Pi]orthophosphate, the sites of phosphorylation were identified as Ser-10, Ser-139, Thr-197, and Ser-338. Two of these sites, Thr-197 and Ser-338, are found in the mammalian enzyme (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). The predominant isoform is phosphorylated at Ser-10, Ser-338, and Thr-197. The isoforms cannot be readily interconverted by in vitro autophosphorylation, suggesting that the phosphates are relatively stable once the mature protein is assembled. Unlike the mammalian enzyme, the recombinant enzyme is not myristylated at its animo terminus. By coexpressing the catalytic subunit and N-myristyl transferase, the recombinant catalytic subunit is myristylated, and, under these conditions, phosphorylation at Ser-10 is reduced. The fact that recombinant catalytic subunit mutants that ar...
We agree with the author that a quantitative analysis of the predictive nature of the metrics use... more We agree with the author that a quantitative analysis of the predictive nature of the metrics used in graduate student admissions is a worthy pursuit and value the sincere intentions behind the UCSF Tetrad study. However, these types of analyses would benefit from the same rigorous approaches that we employ in our other research endeavors. As UCSF Tetrad graduates with diverse careers in academia, medicine, industry, and publishing, we hope that the definition of success in graduate school can be as thoughtfully and scientifically examined as the measurements used to select the next young people to follow in our footsteps.
Mutagenesis of the absolutely conserved residue Asp101 of the non-specific monoesterase alkaline ... more Mutagenesis of the absolutely conserved residue Asp101 of the non-specific monoesterase alkaline phosphatase (E.C. 3.1.3.1) from E. coli has produced an enzyme with increased kcat. The carboxyl group of the Asp101 residue has been proposed to be involved in the positioning of Arg166 and the formation of the helix that contains the active site Ser102. The crystal structure of the Asp101-->Ser mutant has been refined at 2.5 A to a final crystallographic R-factor of 0.173. The altered active site structure of the mutant is compared with that of the wild-type as well as with the structures of the mutant enzyme soaked in two known alkaline phosphatase inhibitors (inorganic phosphate and arsenate). The changes affect primarily the side chain of Arg166 which, by losing the hydrogen bond interaction with the carboxyl side chain of Asp101, becomes more flexible. This analysis, in conjunction with product inhibition studies of the mutant enzyme, suggests that at high pH (> 7) the enzyme achieves a quicker catalytic turnover by allowing a faster release of the product.
Proceedings of the National Academy of Sciences, 1999
Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein ... more Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein ␣ subunit (G␣), thereby generating two potential signaling molecules, G␣-GTP and free G␥. The usefulness of dominant negative mutations for investigating Ras and other monomeric G proteins inspired us to create a functionally analogous dominant negative G␣ mutation. Here we describe a mutant ␣ subunit designed to inhibit receptor-mediated hormonal activation of G s , the stimulatory regulator of adenylyl cyclase. To construct this mutant, we introduced into the ␣ subunit (␣ s ) of G s three separate mutations chosen because they impair ␣ s
Achondroplasia is the most common form of human dwarfism caused by a mutation in the fibroblast g... more Achondroplasia is the most common form of human dwarfism caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3), resulting in abnormal endochondral bone formation. C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth and represents a potential therapy for achondroplasia. We have developed a novel, simple and cost effective method to produce a CNP analogue, PG-CNP37, at a large scale from Escherichia coli. A PG-CNP37 fusion protein was over-expressed as inclusion bodies in E. coli, which were purified then cleaved by formic acid to release the PG-CNP37 peptide. Approximately 0.5g of 95% pure, soluble and active PG-CNP37 peptide was produced from 1L of culture using this method and may represent a viable means for large-scale production of other therapeutic peptides.
Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured hu... more Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured human keratinocytes with concurrent increased glucosylceramide but not sphingomyelin generation in these cells. Given that conversion of ceramide to non-apoptotic metabolites such as sphingomyelin and glucosylceramide protects cells from ceramide-induced apoptosis, we hypothesized that failed up-regulation of sphingomyelin generation contributes to ceramide accumulation following UVB irradiation. Because both sphingomyelin synthase and glucosylceramide synthase activities were significantly decreased in
Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondr... more Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondrodysplasia caused by a gain-offunction mutation in fibroblast-growth-factor-receptor 3 (FGFR3). C-type natriuretic peptide (CNP) antagonizes FGFR3 downstream signaling by inhibiting the pathway of mitogen-activated protein kinase (MAPK). Here, we report the pharmacological activity of a 39 amino acid CNP analog (BMN 111) with an extended plasma half-life due to its resistance to neutral-endopeptidase (NEP) digestion. In ACH human growth-plate chondrocytes, we demonstrated a decrease in the phosphorylation of extracellular-signal-regulated kinases 1 and 2, confirming that this CNP analog inhibits fibroblast-growth-factor-mediated MAPK activation. Concomitantly, we analyzed the phenotype of Fgfr3 Y367C/þ mice and showed the presence of ACH-related clinical features in this mouse model. We found that in Fgfr3 Y367C/þ mice, treatment with this CNP analog led to a significant recovery of bone growth. We observed an increase in the axial and appendicular skeleton lengths, and improvements in dwarfism-related clinical features included flattening of the skull, reduced crossbite, straightening of the tibias and femurs, and correction of the growth-plate defect. Thus, our results provide the proof of concept that BMN 111, a NEP-resistant CNP analog, might benefit individuals with ACH and hypochondroplasia.
Acta Crystallographica Section D Biological Crystallography, 1993
. A mutant (Serl39Ala) of the mouse recombinant catalytic (C) subunit of cAMP-dependent protein k... more . A mutant (Serl39Ala) of the mouse recombinant catalytic (C) subunit of cAMP-dependent protein kinase was co-crystallized with a peptide inhibitor, PKI(5-24), and MEGA-8 (octanoyl-N-methylglucamide) detergent. This structure was refined using all observed data (30 248 reflections) between 30 and 1.95 A resolution to an R factor of 0.186. R.m.s. deviations of bond lengths and bond angles are 0.013 A and 2.3 degrees, respectively. The final model has 3075 atoms (207 solvent) with a mean B factor of 31.9 A(2). The placement of invariant protein-kinase residues and most C:PKI(5-24) interactions were confirmed, but register errors affecting residues 55-64 and 309-339 were corrected during refinement by shifting the affected sequences toward the C terminus along the previously determined backbone path. New details of C:PKI(5-24) interactions and the Ser338 autophosphorylation site are described, and the acyl group binding site near the catalytic subunit NH(2) terminus is identified.
We have measured the activation by recombinant rhodopsin of the alpha-subunit (alpha 1) of retina... more We have measured the activation by recombinant rhodopsin of the alpha-subunit (alpha 1) of retinal transducin (Gt, also recombinant) using a new assay. Cultured cells are transiently transfected with DNAs encoding opsin and the three subunits of Gt (alpha t, beta 1 and gamma 1). In the microsomes of these cells, incubated with 11-cis-retinal, light causes the rapid activation of Gt, as measured by the ability of GTP gamma S to protect alpha t fragments from proteolytic degradation. The activation of Gt is also observed when all-trans-retinal is added to microsomes under constant illumination. Activation depends on both opsin and retinal. Opsin mutants with known defects in activating Gt show similar defects in this assay. alpha t mutations that mimic the corresponding mutations in the alpha-subunit of Gs also produce qualitatively similar effects in this assay. As a first step in a strategy aimed at exploring the relationships between structure and function in the interactions of re...
Proceedings of the National Academy of Sciences, 2001
and the corresponding mouse protein less the first two exons (617 residues). Expression of D-AKAP... more and the corresponding mouse protein less the first two exons (617 residues). Expression of D-AKAP2 was characterized by using mouse tissue extracts. Full-length D-AKAP2 from various tissues shows different molecular weights, possibly because of alternative splicing or posttranslational modifications. The cloned human gene product has a molecular weight similar to one of the prominent mouse proteins. In vivo association of D-AKAP2 with PKA in mouse brain was demonstrated by using cAMP agarose pull-down assay. Subcellular localization for endogenous mouse, rat, and human D-AKAP2 was determined by immunocytochemistry, immunohistochemistry, and tissue fractionation. D-AKAP2 from all three species is highly enriched in mitochondria. The mitochondrial localization and the presence of RGS domains in D-AKAP2 may have important implications for its function in PKA and G protein signal transduction.
Proceedings of the National Academy of Sciences, 2008
Phenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activit... more Phenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activity results in neurotoxic levels of phenylalanine. We used the Pah(enu2/enu2) PKU mouse model in short- and long-term studies of enzyme substitution therapy with PEGylated phenylalanine ammonia lyase (PEG-PAL conjugates) from 4 different species. The most therapeutically effective PAL (Av, Anabaena variabilis) species was one without the highest specific activity, but with the highest stability; indicating the importance of protein stability in the development of effective protein therapeutics. A PEG-Av-p.C503S/p.C565S-PAL effectively lowered phenylalanine levels in both vascular space and brain tissue over a >90 day trial period, resulting in reduced manifestations associated with PKU, including reversal of PKU-associated hypopigmentation and enhanced animal health. Phenylalanine reduction occurred in a dose- and loading-dependent manner, and PEGylation reduced the neutralizing immune response to the enzyme. Human clinical trials with PEG-Av-p.C503S/p.C565S-PAL as a treatment for PKU are underway.
The Journal of pharmacology and experimental therapeutics, 2015
Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosoma... more Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in ...
The catalytic subunit of cAMP-dependent protein kinase expressed in Escherichia coli is a phospho... more The catalytic subunit of cAMP-dependent protein kinase expressed in Escherichia coli is a phosphoprotein. By in vivo labeling with [32Pi]orthophosphate, the sites of phosphorylation were identified as Ser-10, Ser-139, Thr-197, and Ser-338. Two of these sites, Thr-197 and Ser-338, are found in the mammalian enzyme (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). The predominant isoform is phosphorylated at Ser-10, Ser-338, and Thr-197. The isoforms cannot be readily interconverted by in vitro autophosphorylation, suggesting that the phosphates are relatively stable once the mature protein is assembled. Unlike the mammalian enzyme, the recombinant enzyme is not myristylated at its animo terminus. By coexpressing the catalytic subunit and N-myristyl transferase, the recombinant catalytic subunit is myristylated, and, under these conditions, phosphorylation at Ser-10 is reduced. The fact that recombinant catalytic subunit mutants that ar...
We agree with the author that a quantitative analysis of the predictive nature of the metrics use... more We agree with the author that a quantitative analysis of the predictive nature of the metrics used in graduate student admissions is a worthy pursuit and value the sincere intentions behind the UCSF Tetrad study. However, these types of analyses would benefit from the same rigorous approaches that we employ in our other research endeavors. As UCSF Tetrad graduates with diverse careers in academia, medicine, industry, and publishing, we hope that the definition of success in graduate school can be as thoughtfully and scientifically examined as the measurements used to select the next young people to follow in our footsteps.
Mutagenesis of the absolutely conserved residue Asp101 of the non-specific monoesterase alkaline ... more Mutagenesis of the absolutely conserved residue Asp101 of the non-specific monoesterase alkaline phosphatase (E.C. 3.1.3.1) from E. coli has produced an enzyme with increased kcat. The carboxyl group of the Asp101 residue has been proposed to be involved in the positioning of Arg166 and the formation of the helix that contains the active site Ser102. The crystal structure of the Asp101-->Ser mutant has been refined at 2.5 A to a final crystallographic R-factor of 0.173. The altered active site structure of the mutant is compared with that of the wild-type as well as with the structures of the mutant enzyme soaked in two known alkaline phosphatase inhibitors (inorganic phosphate and arsenate). The changes affect primarily the side chain of Arg166 which, by losing the hydrogen bond interaction with the carboxyl side chain of Asp101, becomes more flexible. This analysis, in conjunction with product inhibition studies of the mutant enzyme, suggests that at high pH (> 7) the enzyme achieves a quicker catalytic turnover by allowing a faster release of the product.
Proceedings of the National Academy of Sciences, 1999
Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein ... more Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein ␣ subunit (G␣), thereby generating two potential signaling molecules, G␣-GTP and free G␥. The usefulness of dominant negative mutations for investigating Ras and other monomeric G proteins inspired us to create a functionally analogous dominant negative G␣ mutation. Here we describe a mutant ␣ subunit designed to inhibit receptor-mediated hormonal activation of G s , the stimulatory regulator of adenylyl cyclase. To construct this mutant, we introduced into the ␣ subunit (␣ s ) of G s three separate mutations chosen because they impair ␣ s
Achondroplasia is the most common form of human dwarfism caused by a mutation in the fibroblast g... more Achondroplasia is the most common form of human dwarfism caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3), resulting in abnormal endochondral bone formation. C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth and represents a potential therapy for achondroplasia. We have developed a novel, simple and cost effective method to produce a CNP analogue, PG-CNP37, at a large scale from Escherichia coli. A PG-CNP37 fusion protein was over-expressed as inclusion bodies in E. coli, which were purified then cleaved by formic acid to release the PG-CNP37 peptide. Approximately 0.5g of 95% pure, soluble and active PG-CNP37 peptide was produced from 1L of culture using this method and may represent a viable means for large-scale production of other therapeutic peptides.
Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured hu... more Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured human keratinocytes with concurrent increased glucosylceramide but not sphingomyelin generation in these cells. Given that conversion of ceramide to non-apoptotic metabolites such as sphingomyelin and glucosylceramide protects cells from ceramide-induced apoptosis, we hypothesized that failed up-regulation of sphingomyelin generation contributes to ceramide accumulation following UVB irradiation. Because both sphingomyelin synthase and glucosylceramide synthase activities were significantly decreased in
Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondr... more Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondrodysplasia caused by a gain-offunction mutation in fibroblast-growth-factor-receptor 3 (FGFR3). C-type natriuretic peptide (CNP) antagonizes FGFR3 downstream signaling by inhibiting the pathway of mitogen-activated protein kinase (MAPK). Here, we report the pharmacological activity of a 39 amino acid CNP analog (BMN 111) with an extended plasma half-life due to its resistance to neutral-endopeptidase (NEP) digestion. In ACH human growth-plate chondrocytes, we demonstrated a decrease in the phosphorylation of extracellular-signal-regulated kinases 1 and 2, confirming that this CNP analog inhibits fibroblast-growth-factor-mediated MAPK activation. Concomitantly, we analyzed the phenotype of Fgfr3 Y367C/þ mice and showed the presence of ACH-related clinical features in this mouse model. We found that in Fgfr3 Y367C/þ mice, treatment with this CNP analog led to a significant recovery of bone growth. We observed an increase in the axial and appendicular skeleton lengths, and improvements in dwarfism-related clinical features included flattening of the skull, reduced crossbite, straightening of the tibias and femurs, and correction of the growth-plate defect. Thus, our results provide the proof of concept that BMN 111, a NEP-resistant CNP analog, might benefit individuals with ACH and hypochondroplasia.
Acta Crystallographica Section D Biological Crystallography, 1993
. A mutant (Serl39Ala) of the mouse recombinant catalytic (C) subunit of cAMP-dependent protein k... more . A mutant (Serl39Ala) of the mouse recombinant catalytic (C) subunit of cAMP-dependent protein kinase was co-crystallized with a peptide inhibitor, PKI(5-24), and MEGA-8 (octanoyl-N-methylglucamide) detergent. This structure was refined using all observed data (30 248 reflections) between 30 and 1.95 A resolution to an R factor of 0.186. R.m.s. deviations of bond lengths and bond angles are 0.013 A and 2.3 degrees, respectively. The final model has 3075 atoms (207 solvent) with a mean B factor of 31.9 A(2). The placement of invariant protein-kinase residues and most C:PKI(5-24) interactions were confirmed, but register errors affecting residues 55-64 and 309-339 were corrected during refinement by shifting the affected sequences toward the C terminus along the previously determined backbone path. New details of C:PKI(5-24) interactions and the Ser338 autophosphorylation site are described, and the acyl group binding site near the catalytic subunit NH(2) terminus is identified.
Uploads
Papers by Sean Bell