WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William He... more WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable ‘mini’ integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20 000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy’s origins by completing Gaia’s phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects...
We present the Final Design of the WEAVE next-generation spectroscopy facility for the William He... more We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018.
Proceedings of the International Astronomical Union, 2013
We use observations of OGLE-III ab-type RRLyrae stars towards the Galactic centre (Soszyński et a... more We use observations of OGLE-III ab-type RRLyrae stars towards the Galactic centre (Soszyński et al. 2011, AcA 6,1) to study the metallicity and 3D spatial distribution of the old and metal-poor component of the Galactic bulge. Metallicities and distances to the RRLyrae stars are derived photometrically from Fourier-component analyses of their light curves, allowing the determination of distances accurate to ~7% from 0 to 40 kpc. The distance distribution of the RRLyrae stars peaks at 8.8 kpc, with the data indicating the presence of a bar-like structure inclined at ~30° to the line of sight. The dataset also exhibits a secondary concentration of stars beyond the Galactic centre at ~27 kpc. This is consistent with the distance to the Sagittarius (Sgr) dwarf galaxy, and can be attributed to the serendipitous alignment of the Sgr stream with the bulge. This dataset allows the Sgr stream to be traced in this part of the sky for the first time. The underlying metallicity distributions ar...
ABSTRACT Two methods are given for determining distances to streams of high-velocityclouds in orb... more ABSTRACT Two methods are given for determining distances to streams of high-velocityclouds in orbit about the Galactic Centre. Both rely on the parallax generated by the offset of the Sun from the stream’s orbital plane. The distances to all points of the Magellanic Stream are found without use of the Magellanic Cloud distances.
We present the first metallicity distribution functions of the old field populations in the Magel... more We present the first metallicity distribution functions of the old field populations in the Magellanic Clouds (MCs). Our metallicities are based on the Fourier decomposition of Type ab RR Lyrae light curves from the Optical Gravitational Lensing Experiment. On the metallicity scale of Zinn & West, we find a mean metallicity of [Fe/H] = −1.50 ± 0.24 dex based on 16,776 RR Lyrae stars in the Large Magellanic Cloud (LMC). For the Small Magellanic Cloud (SMC) we obtain −1.70 ± 0.27 dex based on 1831 RR Lyrae stars. These uncertainties represent the intrinsic spread in the population rather than the standard deviation of the mean. Our results are in good agreement with the few existing spectroscopic metallicity determinations for LMC RR Lyrae stars from the literature. For both the LMC and the SMC the metallicity spread exceeds 1 dex in [Fe/H]. The distribution of metallicities in both Clouds is very uniform, and no significant metallicity gradient is detectable. We also do not find any ...
WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William He... more WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable ‘mini’ integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20 000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy’s origins by completing Gaia’s phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects...
We present the Final Design of the WEAVE next-generation spectroscopy facility for the William He... more We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018.
Proceedings of the International Astronomical Union, 2013
We use observations of OGLE-III ab-type RRLyrae stars towards the Galactic centre (Soszyński et a... more We use observations of OGLE-III ab-type RRLyrae stars towards the Galactic centre (Soszyński et al. 2011, AcA 6,1) to study the metallicity and 3D spatial distribution of the old and metal-poor component of the Galactic bulge. Metallicities and distances to the RRLyrae stars are derived photometrically from Fourier-component analyses of their light curves, allowing the determination of distances accurate to ~7% from 0 to 40 kpc. The distance distribution of the RRLyrae stars peaks at 8.8 kpc, with the data indicating the presence of a bar-like structure inclined at ~30° to the line of sight. The dataset also exhibits a secondary concentration of stars beyond the Galactic centre at ~27 kpc. This is consistent with the distance to the Sagittarius (Sgr) dwarf galaxy, and can be attributed to the serendipitous alignment of the Sgr stream with the bulge. This dataset allows the Sgr stream to be traced in this part of the sky for the first time. The underlying metallicity distributions ar...
ABSTRACT Two methods are given for determining distances to streams of high-velocityclouds in orb... more ABSTRACT Two methods are given for determining distances to streams of high-velocityclouds in orbit about the Galactic Centre. Both rely on the parallax generated by the offset of the Sun from the stream’s orbital plane. The distances to all points of the Magellanic Stream are found without use of the Magellanic Cloud distances.
We present the first metallicity distribution functions of the old field populations in the Magel... more We present the first metallicity distribution functions of the old field populations in the Magellanic Clouds (MCs). Our metallicities are based on the Fourier decomposition of Type ab RR Lyrae light curves from the Optical Gravitational Lensing Experiment. On the metallicity scale of Zinn & West, we find a mean metallicity of [Fe/H] = −1.50 ± 0.24 dex based on 16,776 RR Lyrae stars in the Large Magellanic Cloud (LMC). For the Small Magellanic Cloud (SMC) we obtain −1.70 ± 0.27 dex based on 1831 RR Lyrae stars. These uncertainties represent the intrinsic spread in the population rather than the standard deviation of the mean. Our results are in good agreement with the few existing spectroscopic metallicity determinations for LMC RR Lyrae stars from the literature. For both the LMC and the SMC the metallicity spread exceeds 1 dex in [Fe/H]. The distribution of metallicities in both Clouds is very uniform, and no significant metallicity gradient is detectable. We also do not find any ...
Uploads
Papers by Shoko Jin