"Live High-Train Low" (LHTL) training can alter oxidative statu... more "Live High-Train Low" (LHTL) training can alter oxidative status of athletes. This study compared prooxidant/antioxidant balance responses following two LHTL protocols of the same duration and at the same living altitude of 2250 m in either normobaric (NH) or hypobaric (HH) hypoxia. Twenty-four well-trained triathletes underwent the following two 18-day LHTL protocols in a cross-over and randomized manner: Living altitude (PIO2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg in NH and HH, respectively); training "natural" altitude (~1000-1100 m) and training loads were precisely matched between both LHTL protocols. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP) and nitrotyrosine] and antioxidant markers [ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD) and catalase], NO metabolism end-products (NOx) and uric acid (UA) were determined before (Pre) and after (Post) the LHTL. Cumulative hypoxic exposure was lower during the NH (229 ± 6 hrs.) compared to the HH (310 ± 4 hrs.; P<0.01) protocol. Following the LHTL, the concentration of AOPP decreased (-27%; P<0.01) and nitrotyrosine increased (+67%; P<0.05) in HH only. FRAP was decreased (-27%; P<0.05) after the NH while was SOD and UA were only increased following the HH (SOD: +54%; P<0.01 and UA: +15%; P<0.01). Catalase activity was increased in the NH only (+20%; P<0.05). These data suggest that 18-days of LHTL performed in either NH or HH differentially affect oxidative status of athletes. Higher oxidative stress levels following the HH LHTL might be explained by the higher overall hypoxic dose and different physiological responses between the NH and HH.
Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized ... more Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized prospective trial investigated whether the addition of moderate exercise can alter oxidative stress induced by continuous hypoxic exposure. Fourteen male participants were confined to 10-d continuous normobaric hypoxia (FIO2 = 0.139 ± 0.003, PIO2 = 88.2 ± 0.6 mm Hg, ∼4000-m simulated altitude) either with (HCE, n = 8, two training sessions per day at 50% of hypoxic maximal aerobic power) or without exercise (HCS, n = 6). Plasma levels of oxidative stress markers (advanced oxidation protein products [AOPP], nitrotyrosine, and malondialdehyde), antioxidant markers (ferric-reducing antioxidant power, superoxide dismutase, glutathione peroxidase, and catalase), nitric oxide end-products, and erythropoietin were measured before the exposure (Pre), after the first 24 h of exposure (D1), after the exposure (Post) and after the 24-h reoxygenation (Post + 1). In addition, graded exercise test in hypoxia was performed before and after the protocol. Maximal aerobic power increased after the protocol in HCE only (+6.8%, P < 0.05). Compared with baseline, AOPP was higher at Post + 1 (+28%, P < 0.05) and nitrotyrosine at Post (+81%, P < 0.05) in HCS only. Superoxide dismutase (+30%, P < 0.05) and catalase (+53%, P < 0.05) increased at Post in HCE only. Higher levels of ferric-reducing antioxidant power (+41%, P < 0.05) at Post and lower levels of AOPP (-47%, P < 0.01) at Post + 1 were measured in HCE versus HCS. Glutathione peroxidase (+31%, P < 0.01) increased in both groups at Post + 1. Similar erythropoietin kinetics was noted in both groups with an increase at D1 (+143%, P < 0.01), a return to baseline at Post, and a decrease at Post + 1 (-56%, P < 0.05). These data provide evidence that 2 h of moderate daily exercise training can attenuate the oxidative stress induced by continuous hypoxic exposure.
The aim of this study was to determine whether 3 weeks of intermittent normobaric hypoxic exposur... more The aim of this study was to determine whether 3 weeks of intermittent normobaric hypoxic exposure at rest was able to elicit changes that would benefit multi-sport athletes. Twenty-two multi-sport athletes of mixed ability were exposed to either a normobaric hypoxic gas (intermittent hypoxic training group) or a placebo gas containing normal room air (placebo group). The participants breathed the gas mixtures in 5-min intervals interspersed with 5-min recovery periods of normal room air for a total of 90 min per day, 5 days per week, over a 3-week period. The oxygen in the hypoxic gas decreased from 13% in week 1 to 10% by week 3. The training and placebo groups underwent a total of four performance tests, including a familiarization and baseline trial before the intervention, followed by trials at 2 and 17 days after the intervention. Time to complete the 3-km run decreased by 1.7%[95% confidence interval (CI) = -0.6 - 3.9%] 2 days after, and by 2.3% (CI = 0.25 - 4.4%) 17 days after, the last hypoxic episode in the training relative to the placebo group. Substantial changes in the training relative to the placebo group also included increased reticulocyte count 2 days (23.5%; CI =-1.9 to 44.9%) and 12 days (14.6%; CI = -7.1 to 36.4%) post-exposure. The effect of intermittent hypoxic training on 3-km performance found in this study is likely to be beneficial, which suggests non-elite multi-sport athletes should expect such training to enhance performance.
"Live High-Train Low" (LHTL) training can alter oxidative statu... more "Live High-Train Low" (LHTL) training can alter oxidative status of athletes. This study compared prooxidant/antioxidant balance responses following two LHTL protocols of the same duration and at the same living altitude of 2250 m in either normobaric (NH) or hypobaric (HH) hypoxia. Twenty-four well-trained triathletes underwent the following two 18-day LHTL protocols in a cross-over and randomized manner: Living altitude (PIO2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg in NH and HH, respectively); training "natural" altitude (~1000-1100 m) and training loads were precisely matched between both LHTL protocols. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP) and nitrotyrosine] and antioxidant markers [ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD) and catalase], NO metabolism end-products (NOx) and uric acid (UA) were determined before (Pre) and after (Post) the LHTL. Cumulative hypoxic exposure was lower during the NH (229 ± 6 hrs.) compared to the HH (310 ± 4 hrs.; P<0.01) protocol. Following the LHTL, the concentration of AOPP decreased (-27%; P<0.01) and nitrotyrosine increased (+67%; P<0.05) in HH only. FRAP was decreased (-27%; P<0.05) after the NH while was SOD and UA were only increased following the HH (SOD: +54%; P<0.01 and UA: +15%; P<0.01). Catalase activity was increased in the NH only (+20%; P<0.05). These data suggest that 18-days of LHTL performed in either NH or HH differentially affect oxidative status of athletes. Higher oxidative stress levels following the HH LHTL might be explained by the higher overall hypoxic dose and different physiological responses between the NH and HH.
Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized ... more Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized prospective trial investigated whether the addition of moderate exercise can alter oxidative stress induced by continuous hypoxic exposure. Fourteen male participants were confined to 10-d continuous normobaric hypoxia (FIO2 = 0.139 ± 0.003, PIO2 = 88.2 ± 0.6 mm Hg, ∼4000-m simulated altitude) either with (HCE, n = 8, two training sessions per day at 50% of hypoxic maximal aerobic power) or without exercise (HCS, n = 6). Plasma levels of oxidative stress markers (advanced oxidation protein products [AOPP], nitrotyrosine, and malondialdehyde), antioxidant markers (ferric-reducing antioxidant power, superoxide dismutase, glutathione peroxidase, and catalase), nitric oxide end-products, and erythropoietin were measured before the exposure (Pre), after the first 24 h of exposure (D1), after the exposure (Post) and after the 24-h reoxygenation (Post + 1). In addition, graded exercise test in hypoxia was performed before and after the protocol. Maximal aerobic power increased after the protocol in HCE only (+6.8%, P < 0.05). Compared with baseline, AOPP was higher at Post + 1 (+28%, P < 0.05) and nitrotyrosine at Post (+81%, P < 0.05) in HCS only. Superoxide dismutase (+30%, P < 0.05) and catalase (+53%, P < 0.05) increased at Post in HCE only. Higher levels of ferric-reducing antioxidant power (+41%, P < 0.05) at Post and lower levels of AOPP (-47%, P < 0.01) at Post + 1 were measured in HCE versus HCS. Glutathione peroxidase (+31%, P < 0.01) increased in both groups at Post + 1. Similar erythropoietin kinetics was noted in both groups with an increase at D1 (+143%, P < 0.01), a return to baseline at Post, and a decrease at Post + 1 (-56%, P < 0.05). These data provide evidence that 2 h of moderate daily exercise training can attenuate the oxidative stress induced by continuous hypoxic exposure.
The aim of this study was to determine whether 3 weeks of intermittent normobaric hypoxic exposur... more The aim of this study was to determine whether 3 weeks of intermittent normobaric hypoxic exposure at rest was able to elicit changes that would benefit multi-sport athletes. Twenty-two multi-sport athletes of mixed ability were exposed to either a normobaric hypoxic gas (intermittent hypoxic training group) or a placebo gas containing normal room air (placebo group). The participants breathed the gas mixtures in 5-min intervals interspersed with 5-min recovery periods of normal room air for a total of 90 min per day, 5 days per week, over a 3-week period. The oxygen in the hypoxic gas decreased from 13% in week 1 to 10% by week 3. The training and placebo groups underwent a total of four performance tests, including a familiarization and baseline trial before the intervention, followed by trials at 2 and 17 days after the intervention. Time to complete the 3-km run decreased by 1.7%[95% confidence interval (CI) = -0.6 - 3.9%] 2 days after, and by 2.3% (CI = 0.25 - 4.4%) 17 days after, the last hypoxic episode in the training relative to the placebo group. Substantial changes in the training relative to the placebo group also included increased reticulocyte count 2 days (23.5%; CI =-1.9 to 44.9%) and 12 days (14.6%; CI = -7.1 to 36.4%) post-exposure. The effect of intermittent hypoxic training on 3-km performance found in this study is likely to be beneficial, which suggests non-elite multi-sport athletes should expect such training to enhance performance.
Uploads
Papers by Tadej Debevec