Variable rate technology offers a sustainable, efficient, and cost-effective solution for fertili... more Variable rate technology offers a sustainable, efficient, and cost-effective solution for fertilizer application. A study was conducted to design and develop a variable rate fertilizer applicator to detect real-time deficiency of N within the field and apply it per requirement of the crop. The microcontroller system was designed to receive a signal from the N sensor and send a signal to the pulse-width-modulation valve to vary the rotational speed of the hydraulic motor resulting in variation in the rotation of the metering mechanism drive shaft based on the recommended amount of fertilizer. During the field study, three replications were conducted, each of which was divided into four plots. The response time between the N sensing and fertilizer discharging fell within the range of 3.49 to 4.90 s. Fertilizer applied using the developed variable rate applicator indicated that when the fertilizer rate is increased from N1 to N4 (kg ha−1), NDVI increased from 0.56 to 0.78 and drive shaft rotational speed decreased from 20 to 0 rpm in order to apply the fertilizer at a rate of 0.00 instead of 78.36 kg ha−1. Using the developed applicator demonstrates that this technology could reduce environmental impact, making farming more sustainable.
Variable rate technology offers a sustainable, efficient, and cost-effective solution for fertili... more Variable rate technology offers a sustainable, efficient, and cost-effective solution for fertilizer application. A study was conducted to design and develop a variable rate fertilizer applicator to detect real-time deficiency of N within the field and apply it per requirement of the crop. The microcontroller system was designed to receive a signal from the N sensor and send a signal to the pulse-width-modulation valve to vary the rotational speed of the hydraulic motor resulting in variation in the rotation of the metering mechanism drive shaft based on the recommended amount of fertilizer. During the field study, three replications were conducted, each of which was divided into four plots. The response time between the N sensing and fertilizer discharging fell within the range of 3.49 to 4.90 s. Fertilizer applied using the developed variable rate applicator indicated that when the fertilizer rate is increased from N1 to N4 (kg ha−1), NDVI increased from 0.56 to 0.78 and drive shaft rotational speed decreased from 20 to 0 rpm in order to apply the fertilizer at a rate of 0.00 instead of 78.36 kg ha−1. Using the developed applicator demonstrates that this technology could reduce environmental impact, making farming more sustainable.
Uploads
Papers by Vishal Bector