Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approa... more Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP–GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused–backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Initiation is a rate-limiting step in transcription. We employed a series of approaches to examin... more Initiation is a rate-limiting step in transcription. We employed a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. We show that, contrary to expectations, RNAP exit kinetics from later stages of initiation (e.g. from a 7-base transcript) was markedly slower than from earlier stages. Further examination implicated a previously unidentified intermediate in which RNAP adopted a long-lived backtracked state during initiation. In agreement, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states and prevented RNAP backtracking. Our results indicate a previously uncharacterized RNAP initiation state that could be exploited for therapeutic purposes and may reflect a conserved intermediate among paused, initiating eukaryotic enzymes.
Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approa... more Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP–GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused–backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Initiation is a rate-limiting step in transcription. We employed a series of approaches to examin... more Initiation is a rate-limiting step in transcription. We employed a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. We show that, contrary to expectations, RNAP exit kinetics from later stages of initiation (e.g. from a 7-base transcript) was markedly slower than from earlier stages. Further examination implicated a previously unidentified intermediate in which RNAP adopted a long-lived backtracked state during initiation. In agreement, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states and prevented RNAP backtracking. Our results indicate a previously uncharacterized RNAP initiation state that could be exploited for therapeutic purposes and may reflect a conserved intermediate among paused, initiating eukaryotic enzymes.
Uploads
Papers by YAZAN ALHADID