The relative contribution of phenotypic measures and CYP2C9-vitamin K epoxide reductase complex s... more The relative contribution of phenotypic measures and CYP2C9-vitamin K epoxide reductase complex subunit 1 (VKORC1) polymorphisms to warfarin dose requirements at day 14 was determined in 132 hospitalized, heavily medicated patients. Phenotypic measures were (1) the urinary losartan metabolic ratio before the first dose of warfarin, (2) the S:R-warfarin ratio at day 1, and (3) a dose-adjusted international normalized ratio (INR) at day 4. CYP2C9 and VKORC1 genotypes were determined by gene chip analysis. In multivariate analyses, the dose-adjusted INR at day 4 explained 31% of variability observed in warfarin doses at day 14, whereas genotypic measures (CYP2C9-VKORC1) contributed 6.5%. When S:R-warfarin ratio was used, genotypes contributed more significantly (23.5%). Finally, urinary losartan metabolic ratio was of low predictive value. The best models obtained explained 51% of intersubject variability in warfarin dose requirements. Thus, combination of a phenotypic measure to CYP2C9-VKORC1 genotypes represents a useful strategy to predict warfarin doses in patients receiving multiple drugs (11+/-4 drugs/day).
To optimally address the interindividual variability observed in pharmacokinetic drug response, w... more To optimally address the interindividual variability observed in pharmacokinetic drug response, we have created a custom genotyping panel that interrogates most of the key genetic variations present in a set of 181 prioritized genes responsible for the absorption, distribution, metabolism and excretion (ADME) of many therapeutic agents. This consensus list of genes and variants was based on the ADME core and extended gene lists compiled by a group of pharmaceutical companies as having relevance. Although these pharmacokinetic genes and pathways are well known, tools that can interrogate a large number of these genes simultaneously within a single experiment are not currently available. Using novel design strategies, we have developed an optimized and validated ADME genotyping panel, encompassing approximately 3000 variants, that has broad applicability to any study or clinical trial that would benefit from the evaluation of an extensive list of ADME genes. Over the course of three design iterations, overall assay conversion rates were improved from 83 to 97% resulting in a panel that fills in many of the gaps in coverage present on currently available commercial genotyping assays. The utility of the assay has been demonstrated by the screening of more than 1000 samples resulting in the discovery of novel pharmacogenomic associations. The assay, and the underlying methods, will continue to be a valuable tool for use in future pharmacogenomic studies.
evidence that endotoxin exposure during early life is protective coding region of the TLR4 gene a... more evidence that endotoxin exposure during early life is protective coding region of the TLR4 gene are responsible for a substan- against the development of atopy and asthma, although this rela- tial portion of this variability (6). Specifically, a substitution tionship remains poorly understood. It is therefore possible that of glycine for asparginine at amino acid position 259 (D259G) genetic variation
Susceptibility to coronary heart disease (CHD) has long been known to exhibit familial aggregatio... more Susceptibility to coronary heart disease (CHD) has long been known to exhibit familial aggregation, with heritability estimated to be greater than 50%. The French Canadian population of the Saguenay-Lac Saint-Jean region of Quebec, Canada is descended from a founder population that settled this region 300-400 years ago and this may provide increased power to detect genes contributing to complex traits such as CHD. Probands with early-onset CHD, defined by angiographically determined coronary stenosis, and their relatives were recruited from this population (average sibship size of 6.4). Linkage analysis was performed following a genome-wide microsatellite marker scan on 42 families with 284 individuals. Nonparametric linkage (NPL) analysis provided suggestive evidence for a CHD susceptibility locus on chromosome 8 with an NPL score of 3.14 (P=0.001) at D8S1106. Linkage to this locus was verified by fine mapping in an enlarged sample of 50 families with 320 individuals. This analysis provided evidence of linkage at D8S552 (NPL score=3.53, P=0.0003), a marker that maps to the same location as D8S1106. Candidate genes in this region, including macrophage scavenger receptor 1, farnesyl-diphosphate farnesyltransferase 1, fibrinogen-like 1, and GATA-binding protein 4, were resequenced in all coding exons in both affected and unaffected individuals. Association studies with variants in these and five other genes did not identify a disease-associated mutation. In conclusion, a genome-wide scan and additional fine mapping provide evidence for a locus on chromosome 8 that contributes to CHD in a French Canadian population.
The relative contribution of phenotypic measures and CYP2C9-vitamin K epoxide reductase complex s... more The relative contribution of phenotypic measures and CYP2C9-vitamin K epoxide reductase complex subunit 1 (VKORC1) polymorphisms to warfarin dose requirements at day 14 was determined in 132 hospitalized, heavily medicated patients. Phenotypic measures were (1) the urinary losartan metabolic ratio before the first dose of warfarin, (2) the S:R-warfarin ratio at day 1, and (3) a dose-adjusted international normalized ratio (INR) at day 4. CYP2C9 and VKORC1 genotypes were determined by gene chip analysis. In multivariate analyses, the dose-adjusted INR at day 4 explained 31% of variability observed in warfarin doses at day 14, whereas genotypic measures (CYP2C9-VKORC1) contributed 6.5%. When S:R-warfarin ratio was used, genotypes contributed more significantly (23.5%). Finally, urinary losartan metabolic ratio was of low predictive value. The best models obtained explained 51% of intersubject variability in warfarin dose requirements. Thus, combination of a phenotypic measure to CYP2C9-VKORC1 genotypes represents a useful strategy to predict warfarin doses in patients receiving multiple drugs (11+/-4 drugs/day).
To optimally address the interindividual variability observed in pharmacokinetic drug response, w... more To optimally address the interindividual variability observed in pharmacokinetic drug response, we have created a custom genotyping panel that interrogates most of the key genetic variations present in a set of 181 prioritized genes responsible for the absorption, distribution, metabolism and excretion (ADME) of many therapeutic agents. This consensus list of genes and variants was based on the ADME core and extended gene lists compiled by a group of pharmaceutical companies as having relevance. Although these pharmacokinetic genes and pathways are well known, tools that can interrogate a large number of these genes simultaneously within a single experiment are not currently available. Using novel design strategies, we have developed an optimized and validated ADME genotyping panel, encompassing approximately 3000 variants, that has broad applicability to any study or clinical trial that would benefit from the evaluation of an extensive list of ADME genes. Over the course of three design iterations, overall assay conversion rates were improved from 83 to 97% resulting in a panel that fills in many of the gaps in coverage present on currently available commercial genotyping assays. The utility of the assay has been demonstrated by the screening of more than 1000 samples resulting in the discovery of novel pharmacogenomic associations. The assay, and the underlying methods, will continue to be a valuable tool for use in future pharmacogenomic studies.
evidence that endotoxin exposure during early life is protective coding region of the TLR4 gene a... more evidence that endotoxin exposure during early life is protective coding region of the TLR4 gene are responsible for a substan- against the development of atopy and asthma, although this rela- tial portion of this variability (6). Specifically, a substitution tionship remains poorly understood. It is therefore possible that of glycine for asparginine at amino acid position 259 (D259G) genetic variation
Susceptibility to coronary heart disease (CHD) has long been known to exhibit familial aggregatio... more Susceptibility to coronary heart disease (CHD) has long been known to exhibit familial aggregation, with heritability estimated to be greater than 50%. The French Canadian population of the Saguenay-Lac Saint-Jean region of Quebec, Canada is descended from a founder population that settled this region 300-400 years ago and this may provide increased power to detect genes contributing to complex traits such as CHD. Probands with early-onset CHD, defined by angiographically determined coronary stenosis, and their relatives were recruited from this population (average sibship size of 6.4). Linkage analysis was performed following a genome-wide microsatellite marker scan on 42 families with 284 individuals. Nonparametric linkage (NPL) analysis provided suggestive evidence for a CHD susceptibility locus on chromosome 8 with an NPL score of 3.14 (P=0.001) at D8S1106. Linkage to this locus was verified by fine mapping in an enlarged sample of 50 families with 320 individuals. This analysis provided evidence of linkage at D8S552 (NPL score=3.53, P=0.0003), a marker that maps to the same location as D8S1106. Candidate genes in this region, including macrophage scavenger receptor 1, farnesyl-diphosphate farnesyltransferase 1, fibrinogen-like 1, and GATA-binding protein 4, were resequenced in all coding exons in both affected and unaffected individuals. Association studies with variants in these and five other genes did not identify a disease-associated mutation. In conclusion, a genome-wide scan and additional fine mapping provide evidence for a locus on chromosome 8 that contributes to CHD in a French Canadian population.
Uploads
Papers by Yannick Renaud