Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
ali ramezani

    ali ramezani

    Insertional mutagenesis by retroviral vectors is a major impediment to the clinical application of hematopoietic stem cell gene transfer for the treatment of hematologic disorders. We recently developed an insulated self-inactivating... more
    Insertional mutagenesis by retroviral vectors is a major impediment to the clinical application of hematopoietic stem cell gene transfer for the treatment of hematologic disorders. We recently developed an insulated self-inactivating gammaretroviral vector, RMSinOFB, which uses a novel enhancer-blocking element that significantly decreases genotoxicity of retroviral integration. In this study, we used the RMSinOFB vector to evaluate the efficacy of a newly bioengineered factor VIII (fVIII) variant (efVIII)--containing a combination of A1 domain point mutations (L303E/F309S) and an extended partial B domain for improved secretion plus A2 domain mutations (R484A/R489A/P492A) for reduced immunogenicity--toward successful treatment of murine hemophilia A. In cell lines, efVIII was secreted at up to 6-fold higher levels than an L303E/F309S A1 domain-only fVIII variant (sfVIIIDeltaB). Most important, when compared with a conventional gammaretroviral vector expressing sfVIIIDeltaB, lower doses of RMSin-efVIII-OFB-transduced hematopoietic stem cells were needed to generate comparable curative fVIII levels in hemophilia A BALB/c mice after reduced-intensity total body irradiation or nonmyeloablative chemotherapy conditioning regimens. These data suggest that the safety-augmented RMSin-efVIII-OFB platform represents an encouraging step in the development of a clinically appropriate gene addition therapy for hemophilia A.
    Accumulated data indicate that current generation lentiviral vectors, which generally utilize an internal human cytomegalovirus (CMV) immediate early region enhancer-promoter to transcribe the gene of interest, are not yet optimized for... more
    Accumulated data indicate that current generation lentiviral vectors, which generally utilize an internal human cytomegalovirus (CMV) immediate early region enhancer-promoter to transcribe the gene of interest, are not yet optimized for efficient expression in human hematopoietic stem/progenitor cells (HSPCs). As a first step toward this goal, we constructed self-inactivating derivatives of the HIV-1-based transfer vector pHR' containing the enhanced green fluorescent protein (GFP) gene as reporter and the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). GFP expression was driven by a variety of strong viral and cellular promoters, including the murine stem cell virus (MSCV) long terminal repeat (LTR), a Gibbon ape leukemia virus (GALV) LTR, the human elongation factor 1alpha (EF1alpha) promoter, the composite CAG promoter (consisting of the CMV immediate early enhancer and the chicken beta-actin promoter), and the human phosphoglycerate kinase 1 (PGK) promoter. In contrast to results obtained in human embryonic kidney 293T cells and fibrosarcoma HT1080 cells, in which the CMV promoter expressed GFP at the highest levels, significantly higher levels of GFP expression (3- to 5-fold) were achieved with the MSCV LTR, the EF1alpha promoter, and the CAG promoter in the human HSPC line KG1a. Removal of the WPRE indicated that it stimulated GFP expression from all of the vectors in KG1a cells (up to 3-fold), although it only marginally improved the performance of the intron-containing EF1alpha and CAG promoters (<1.5-fold stimulation). The vectors using the MSCV LTR, the GALV LTR, and the PGK promoter were the most efficient at transducing primary human CD34+ cord blood progenitors under the conditions employed. High-level GFP expression in the NOD/SCID xenograft model was demonstrated with the pHR' derivative bearing the MSCV LTR. These new lentiviral vector backbones provide a basis for the rational design of improved delivery vehicles for human HSPC gene transfer applications.
    Hemophilia A, the most common inherited bleeding disorder, is caused by deficiency or functional defects in coagulation factor VIII (fVIII). Conventional treatment for this disease involves intravenous infusions of plasma-derived or... more
    Hemophilia A, the most common inherited bleeding disorder, is caused by deficiency or functional defects in coagulation factor VIII (fVIII). Conventional treatment for this disease involves intravenous infusions of plasma-derived or recombinant fVIII products. Although replacement therapy effectively stops the bleeding episodes, it has a risk of transmission of viral blood-borne diseases and development of neutralizing antibodies that inactivate the administered fVIII protein. Hemophilia A is an attractive candidate for application of gene therapy approaches because the therapeutic window is wide and even modest elevation of fVIII levels will correct the hemophilic phenotype. Ongoing preclinical investigations utilize animal models of hemophilia A, including genetically fVIII-deficient mice and naturally fVIII-deficient dogs, to optimize vectors, transgenes and target cell populations for Phase I clinical trials. In this review, we outline the progress in understanding the mechanisms of fVIII turnover, which provides a basis for development of improved fVIII molecules with prolonged half-life in the circulation. We discuss the possibility of incorporating these improved fVIII molecules as transgenes into self-inactivating lentiviral vectors carrying chromatin insulator sequences, representing a new generation of gene delivery vehicle, to target hematopoietic stem cells and endothelial cells. The use of hematopoietic stem cells as the target cell population may prevent inhibitor formation to transduced fVIII by induction of immune tolerance. Alternatively, endothelial cells may support optimal synthesis of fVIII and myeloablative conditioning of patients with radiation or chemotherapy may not be required for efficient engraftment of the engineered cells. Collectively, these proposed advances represent promising prophylactic strategies toward long-term correction of the coagulation defect in this progressively debilitating, life-threatening disease.
    Fanconi anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure due to defective stem cell function. FA... more
    Fanconi anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure due to defective stem cell function. FA patients' cells are hypersensitive to DNA cross-linking agents such as mitomycin C (MMC), exposure to which results in cytogenetic aberrations and cell death. To date Moloney murine leukemia virus vectors have been used in clinical gene therapy. Recently, third-generation lentiviral vectors based on the HIV-1 genome have been developed for efficient gene transfer to hematopoietic stem cells. We generated a self-inactivating lentiviral vector expressing the FA group A cDNA driven by the murine stem cell virus U3 LTR promoter and used the vector to transduce side-population (SP) cells isolated from bone marrow of Fanconi anemia group A (Fanca) knockout mice. One thousand transduced SP cells reconstituted the bone marrow of sublethally irradiated Fanca recipient mice. Phenotype correction was demonstrated by stable hematopoiesis following MMC challenge. Using real-time PCR, one proviral vector DNA copy per cell was detected in all lineage-committed cells in the peripheral blood of both primary and secondary recipients. Our results suggest that the lentiviral vector transduces stem cells capable of self-renewal and long-term hematopoiesis in vivo and is potentially useful for clinical gene therapy of FA hematopoietic cells.
    Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are... more
    Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are subjected to in vitro hematopoietic differentiation. Here we report the construction of a self-inactivating vector from MSCV, MSinSB, which transmits an intron embedded within the internal transgene cassette to transduced cells. The internal transgene transcriptional unit in MSinSB comprises the composite cytomegalovirus immediate early enhancer-chicken beta-actin promoter and associated 5' splice site positioned upstream of the natural 3' splice site of the gammaretroviral envelope gene, and is configured such that the transgene translational initiation sequence is coincident with the envelope ATG. MSinSB could be produced at titers approaching 10(6) transducing units/ml and directed higher levels of transgene expression in ESCs than a splicing-optimized MSCV-derived vector, MSGV1. Moreover, when transduced ESCs were differentiated into hematopoietic cells in vitro, MSinSB remained transcriptionally active in greater than 90% of the cells, whereas MSGV1 expression was almost completely shut off. Persistent high-level expression of the MSinSB gammaretroviral vector was also demonstrated in murine bone marrow transplant recipients and following in vitro myelomonocytic differentiation of human CD34(+) cord blood stem/progenitor cells.
    The inappropriate survival of cells in the neointima contributes to atherosclerotic plaque progression, while apoptosis in the fibrous cap of lesions contributes to myocardial infarction and stroke. Prior genomic-scale transcript... more
    The inappropriate survival of cells in the neointima contributes to atherosclerotic plaque progression, while apoptosis in the fibrous cap of lesions contributes to myocardial infarction and stroke. Prior genomic-scale transcript profiling of human carotid artery plaque cells with known sensitivity or resistance to fas-induced apoptosis identified candidate genes involved in lesion cell apoptosis. Retroviral overexpression indicated that several candidate factors were not causative, but that Bcl-X(L) conferred complete resistance to apoptosis induced by fas ligation. Resistant cells failed to efficiently activate caspase 8, an effect which was also observed in Bcl-X(L)-transfected cells. Small-molecule Bcl-2/X(L) inhibitors and siRNA knockdown of Bcl-X(L) markedly sensitized resistant cells to apoptosis, and partially restored caspase 8 activation. Caspase 3, 6 and 9 inhibitors reduced caspase 8 activation and blocked apoptosis. Complete knockdown of caspase 9 did not reduce apoptosis, while knockdown of Bid suppressed apoptosis, suggesting that mitochondrial pathways independent of caspase 9, such as Smac/Diablo or AIF, provide a necessary mitochondrial input to efficient caspase activation. Bcl-X(L) appears to modulate lesion cell apoptosis by suppressing mitochondrial amplification of caspase activation loops. The results may have direct implications for controlling plaque instability/progression, and identify a new class of small molecules to inhibit restenosis.
    Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are... more
    Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are subjected to in vitro hematopoietic differentiation. Here we report the construction of a self-inactivating vector from MSCV, MSinSB, which transmits an intron embedded within the internal transgene cassette to transduced cells. The internal transgene transcriptional unit in MSinSB comprises the composite cytomegalovirus immediate early enhancer-chicken beta-actin promoter and associated 5' splice site positioned upstream of the natural 3' splice site of the gammaretroviral envelope gene, and is configured such that the transgene translational initiation sequence is coincident with the envelope ATG. MSinSB could be produced at titers approaching 10(6) transducing units/ml and directed higher levels of transgene expression in ESCs than a splicing-optimized MSCV-derived vector, MSGV1. Moreover, when transduced ESCs were differentiated into hematopoietic cells in vitro, MSinSB remained transcriptionally active in greater than 90% of the cells, whereas MSGV1 expression was almost completely shut off. Persistent high-level expression of the MSinSB gammaretroviral vector was also demonstrated in murine bone marrow transplant recipients and following in vitro myelomonocytic differentiation of human CD34(+) cord blood stem/progenitor cells.
    Accumulated data indicate that current generation lentiviral vectors, which generally utilize an internal human cytomegalovirus (CMV) immediate early region enhancer-promoter to transcribe the gene of interest, are not yet optimized for... more
    Accumulated data indicate that current generation lentiviral vectors, which generally utilize an internal human cytomegalovirus (CMV) immediate early region enhancer-promoter to transcribe the gene of interest, are not yet optimized for efficient expression in human hematopoietic stem/progenitor cells (HSPCs). As a first step toward this goal, we constructed self-inactivating derivatives of the HIV-1-based transfer vector pHR' containing the enhanced green fluorescent protein (GFP) gene as reporter and the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). GFP expression was driven by a variety of strong viral and cellular promoters, including the murine stem cell virus (MSCV) long terminal repeat (LTR), a Gibbon ape leukemia virus (GALV) LTR, the human elongation factor 1alpha (EF1alpha) promoter, the composite CAG promoter (consisting of the CMV immediate early enhancer and the chicken beta-actin promoter), and the human phosphoglycerate kinase 1 (PGK) promoter. In contrast to results obtained in human embryonic kidney 293T cells and fibrosarcoma HT1080 cells, in which the CMV promoter expressed GFP at the highest levels, significantly higher levels of GFP expression (3- to 5-fold) were achieved with the MSCV LTR, the EF1alpha promoter, and the CAG promoter in the human HSPC line KG1a. Removal of the WPRE indicated that it stimulated GFP expression from all of the vectors in KG1a cells (up to 3-fold), although it only marginally improved the performance of the intron-containing EF1alpha and CAG promoters (<1.5-fold stimulation). The vectors using the MSCV LTR, the GALV LTR, and the PGK promoter were the most efficient at transducing primary human CD34+ cord blood progenitors under the conditions employed. High-level GFP expression in the NOD/SCID xenograft model was demonstrated with the pHR' derivative bearing the MSCV LTR. These new lentiviral vector backbones provide a basis for the rational design of improved delivery vehicles for human HSPC gene transfer applications.
    Hematopoietic stem cells (HSCs) have the capacity to self‐renew and the potential to differentiate into all of the mature blood cell types. The ability to prospectively identify and isolate HSCs has been the subject of extensive... more
    Hematopoietic stem cells (HSCs) have the capacity to self‐renew and the potential to differentiate into all of the mature blood cell types. The ability to prospectively identify and isolate HSCs has been the subject of extensive investigation since the first transplantation studies implying their existence almost 50 years ago. Despite significant advances in enrichment protocols, the continuous in vitro propagation of human HSCs has not yet been achieved. This chapter describes current procedures used to phenotypically and functionally characterize candidate human HSCs and initial efforts to derive permanent human HSC lines.
    A flow cytometric procedure has recently been described to isolate hematopoietic stem cells from mouse bone marrow based on the efflux properties of the vital dye Hoechst 33342. The assay defines a subset of cells-termed the... more
    A flow cytometric procedure has recently been described to isolate hematopoietic stem cells from mouse bone marrow based on the efflux properties of the vital dye Hoechst 33342. The assay defines a subset of cells-termed the "side population" (SP)-by simultaneously measuring fluorescence of the dye at two wavelengths (~450 nm and >670 nm). In this chapter, SP protocols are provided to detect candidate hematopoietic stem cells in mouse bone marrow and human cord blood. In the standard method, SP profiles are readily observed on a stream-in-air cell sorter using 30 mW of 351-356 nm ultraviolet excitation from a krypton-ion laser. Alternatively, SP profiles can be resolved on an analytical flow cytometer with cuvette flow cell using 8 mW of 325-nm ultraviolet excitation from a helium-cadmium laser. The ability to perform the SP assay on an analytical instrument facilitates optimization of staining conditions to identify hematopoietic and other stem cells in a variety of tissues. It is also demonstrated that SP profiles of slightly lower resolution can be obtained on a stream-in-air cell sorter using 100 mW of 407-nm violet excitation from a krypton-ion laser, raising the possibility that with appropriate validation the SP assay could be performed on flow cytometers that are not equipped with ultraviolet lasers.
    Research Interests:
    Translocations resulting in ectopic expression of the TLX1 homeobox gene (previously known as HOX11) are recurrent events in human T-cell acute lymphoblastic leukemia (T-ALL). Transduction of primary murine hematopoietic stem/progenitor... more
    Translocations resulting in ectopic expression of the TLX1 homeobox gene (previously known as HOX11) are recurrent events in human T-cell acute lymphoblastic leukemia (T-ALL). Transduction of primary murine hematopoietic stem/progenitor cells with retroviral vectors expressing TLX1 readily yields immortalized hematopoietic progenitor cell lines. Understanding the processes involved in TLX1-mediated cellular immortalization should yield insights into the growth and differentiation pathways altered by TLX1 during the development of T-ALL. In recent clinical gene therapy trials, hematopoietic clonal dominance or T-ALL-like diseases have occurred as a direct consequence of insertional activation of the EVI1, PRDM16 or LMO2 proto-oncogenes by the retroviral vectors used to deliver the therapeutic genes. Additionally, the generation of murine hematopoietic progenitor cell lines due to retroviral integrations into Evi1 or Prdm16 has also been recently reported. Here, we determined by linker-mediated nested polymerase chain reaction the integration sites in eight TLX1-immortalized hematopoietic cell lines. Notably, no common integration site was observed among the cell lines. Moreover, no insertions into the Evi1 or Prdm16 genes were identified although insertion near Lmo2 was observed in one instance. However, neither Lmo2 nor any of the other genes examined surrounding the integration sites showed differential vector-influenced expression compared to the cell lines lacking such insertions. While we cannot exclude the possibility that insertional side effects transiently provided a selective growth/survival advantage to the hematopoietic progenitor populations, our results unequivocally rule out insertions into Evi1 and Prdm16 as being integral to the TLX1-initiated immortalization process. © 2009 Wiley-Liss, Inc.