Engineering Applications of Artificial Intelligence, 2001
This paper considers the problem of parallel and diagonal parking in wheeled vehicles. A method t... more This paper considers the problem of parallel and diagonal parking in wheeled vehicles. A method to plan in real-time a set of collision-free manoeuvres is presented. Artificial intelligent techniques, namely fuzzy logic, play an important role in the practical ...
Exercise has been found to impact molecular systems important for maintaining neural function and... more Exercise has been found to impact molecular systems important for maintaining neural function and plasticity. A characteristic finding for the effects of exercise in the brain and spinal cord has been the up-regulation of brain-derived neurotrophic factor (BDNF). This review focuses on the ability of exercise to impact brain circuitry by promoting neuronal repair and enhance learning and memory by increasing neurotrophic support. A paragon for the role of activity-dependent neurotrophins in the CNS is the capacity of BDNF to facilitate synaptic function and neuronal excitability. The authors discuss the effects of exercise in the intact and injured brain and spinal cord injury and the implementation of exercise preinjury and postinjury. As the CNS displays a capacity for plasticity throughout one's lifespan, exercise may be a powerful lifestyle implementation that could be used to augment synaptic plasticity, promote behavioral rehabilitation, and counteract the deleterious effects of aging.
The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This stu... more The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This study reveals that the effects of exercise on brain neuronal and cognitive plasticity are in part modulated by a central source of insulin-like growth factor-I. Exercise selectively increased insulin-like growth factor-I expression without affecting insulin-like growth factor-II expression in the rat hippocampus. To determine the role that insulin-like growth factor-I holds in mediating exercise-induced neuronal and cognitive enhancement, a specific antibody against the insulin-like growth factor-I receptor was used to block the action of insulin-like growth factor-I in the hippocampus during a 5-day voluntary exercise period. A twotrial-per-day Morris water maze was performed for five consecutive days, succeeded by a probe trial 2 days later. Blocking hippocampal insulin-like growth factor-I receptors did not significantly attenuate the ability of exercise to enhance learning acquisition, but abolished the effect of exercise on augmenting recall. Blocking the insulin-like growth factor-I receptor significantly reversed the exercise-induced increase in the levels of brain-derived neurotrophic factor mRNA and protein and pro-brain-derived neurotrophic factor protein, suggesting that the effects of insulin-like growth factor-I may be partially accomplished by modulating the precursor to the mature brain-derived neurotrophic factor. A molecular analysis revealed that exercise significantly elevated proteins downstream to brain-derived neurotrophic factor activation important for synaptic function, i.e. synapsin I, and signal transduction cascades associated with memory processes, i.e. phosphorylated calcium/calmodulin protein kinase II and phosphorylated mitogen-activated protein kinase II. Blocking the insulin-like growth factor-I receptor abolished these exercise-induced increases. Our results illustrate a possible mechanism by which insulin-like growth factor-I interfaces with the brain-derived neurotrophic factor system to mediate exercise-induced synaptic and cognitive plasticity.
Studies were performed to determine the effects of acute and chronic voluntary periods of exercis... more Studies were performed to determine the effects of acute and chronic voluntary periods of exercise on the expression of hippocampal genes. RNAs from rodents exposed to a running wheel for 3, 7 and 28 days were examined using a microarray with 1176 cDNAs expressed primarily in the brain. The expression of selected genes was quanti®ed by Taqman RT-PCR or RNase protection assay. The largest up-regulation was observed in genes involved with synaptic traf®cking (synapsin I, synaptotagmin and syntaxin); signal transduction pathways (Ca 2+ /calmodulin-dependent protein kinase II, CaM-KII; mitogen-activated/ extracellular signal-regulated protein kinase, MAP-K/ERK I and II; protein kinase C, PKC-d) or transcription regulators (cyclic AMP response element binding protein, CREB). Genes associated with the glutamatergic system were up-regulated (N-methyl-Daspartate receptor, NMDAR-2A and NMDAR-2B and excitatory amino acid carrier 1, EAAC1), while genes related to the gammaaminobutyric acid (GABA) system were down-regulated (GABA A receptor, glutamate decarboxylase GAD65). Brain-derived neurotrophic factor (BDNF) was the only trophic factor whose gene was consistently up-regulated at all timepoints. These results, together with the fact that most of the genes up-regulated have a recognized interaction with BDNF, suggest a central role for BDNF on the effects of exercise on brain plasticity. The temporal pro®le of gene expression seems to delineate a mechanism by which speci®c molecular pathways are activated after exercise performance. For example, the CaM-K signal system seems to be active during acute and chronic periods of exercise, while the MAP-K/ERK system seems more important during long-term exercise.
Omega-3 fatty acids (i.e., docosahexaenoic acid; DHA) regulate signal transduction and gene expre... more Omega-3 fatty acids (i.e., docosahexaenoic acid; DHA) regulate signal transduction and gene expression, and protect neurons from death. In this study we examined the capacity of dietary omega3 fatty acids supplementation to help the brain to cope with the effects of traumatic injury. Rats were fed a regular diet or an experimental diet supplemented with omega-3 fatty acids, for 4 weeks before a mild fluid percussion injury (FPI) was performed. FPI increased oxidative stress, and impaired learning ability in the Morris water maze. This type of lesion also reduced levels of brain-derived neurotrophic factor (BDNF), synapsin I, and cAMP responsive element-binding protein (CREB). It is known that BDNF facilitates synaptic transmission and learning ability by modulating synapsin I and CREB. Supplementation of omega-3 fatty acids in the diet counteracted all of the studied effects of FPI, that is, normalized levels of BDNF and associated synapsin I and CREB, reduced oxidative damage, and counteracted learning disability. The reduction of oxidative stress indicates a benevolent effect of this diet on mechanisms that maintain neuronal function and plasticity. These results imply that omega-3 enriched dietary supplements can provide protection against reduced plasticity and impaired learning ability after traumatic brain injury.
We found that a short exercise period enhanced cognitive function on the Morris water maze (MWM),... more We found that a short exercise period enhanced cognitive function on the Morris water maze (MWM), such that exercised animals were significantly better than sedentary controls at learning and recalling the location of the platform. The finding that exercise increased brain-derived neurotrophic factor (BDNF), a molecule important for synaptic plasticity and learning and memory, impelled us to examine whether a BDNF-mediated mechanism subserves the capacity of exercise to improve hippocampal-dependent learning. A specific immunoadhesin chimera (TrkB-IgG), that mimics the BDNF receptor, TrkB, to selectively bind BDNF molecules, was used to block BDNF in the hippocampus during a 1-week voluntary exercise period. After this, a 2-trial-per-day MWM was performed for 5 consecutive days, succeeded by a probe trial 2 days later. By inhibiting BDNF action we blocked the benefit of exercise on cognitive function, such that the learning and recall abilities of exercising animals receiving the BDNF blocker were reduced to sedentary control levels. Inhibiting BDNF action also blocked the effect of exercise on downstream systems regulated by BDNF and important for synaptic plasticity, cAMP response-element-binding protein (CREB) and synapsin I. Specific to exercise, we found an association between CREB and BDNF expression and cognitive function, such that animals who were the fastest learners and had the best recall showed the highest expression of BDNF and associated CREB mRNA levels. These findings suggest a functional role for CREB under the control of BDNF in mediating the exercise-induced enhancement in learning and memory. Our results indicate that synapsin I might also contribute to this BDNF-mediated mechanism.
New evidence indicates that neural activity regulates the expression of trophic factors in the br... more New evidence indicates that neural activity regulates the expression of trophic factors in the brain but regulation of these molecules by select aspects of behaviour remains solely a fascinating possibility. We report that following training in the Morris water maze, a spatial memory task, the hippocampus and cerebellum of learning rats exhibited an increase in basic fibroblast growth factor messenger RNA. Basic fibroblast growth factor messenger RNA levels were higher during the learning of the task and decreased once asymptotic performance was reached, suggesting an involvement of basic fibroblast growth factor in learning/memory. An active control group, which exercised for the same time as the learning group but the spatial learning component of the task was minimized, exhibited a minor increase in basic fibroblast growth factor messenger RNA. The intensification of the physical activity component of the task by massed or intensive training resulted in greater increases in basic fibroblast growth factor messenger RNA for both learning and yoked groups, but levels of basic fibroblast growth factor messenger RNA in the learning group remained higher than yoked only in the cerebellum. Changes in basic fibroblast growth factor were accompanied by an increase in astrocyte density in the hippocampus in agreement with described roles of basic fibroblast growth factor in astrocyte proliferation/reactivity.
We have conducted studies to determine the potential of exercise to benefit the injured spinal co... more We have conducted studies to determine the potential of exercise to benefit the injured spinal cord using neurotrophins. Adult rats were randomly assigned to one of three groups: (1) intact control (Con); (2) sedentary, hemisected at a mid-thoracic level (Sed-Hx), or (3) exercised, hemisected (Ex-Hx). One week after surgery, the Ex-Hx rats were exposed to voluntary running wheels for 3, 7, or 28 days. BDNF mRNA levels on the lesioned side of the spinal cord lumbar region of Sed-Hx rats were~80% of Con values at all time points and BDNF protein levels were~40% of Con at 28 days. Exercise compensated for the reductions in BDNF after hemisection, such that BDNF mRNA levels in the Ex-Hx rats were similar to Con after 3 days and higher than Con after 7 (17%) and 28 (27%) days of exercise. After 28 days of exercise, BDNF protein levels were 33% higher in Ex-Hx than Con rats and were highly correlated (r = 0.86) to running distance. The levels of the downstream effectors for the action of BDNF on synaptic plasticity synapsin I and CREB were lower in Sed-Hx than Con rats at all time points. Synapsin I mRNA and protein levels were higher in Ex-Hx rats than Sed-Hx rats and similar to Con rats at 28 days. CREB mRNA values were higher in Ex-Hx than Sed-Hx rats at all time points. Hemisection had no significant effects on the levels of NT-3 mRNA or protein; however, voluntary exercise resulted in an increase in NT-3 mRNA levels after 28 days (145%). These results are consistent with the concept that synaptic pathways under the regulatory role of BDNF induced by exercise can play a role in facilitating recovery of locomotion following spinal cord injury. D
Clinical and experimental evidence indicate that physical activity has a positive impact on brain... more Clinical and experimental evidence indicate that physical activity has a positive impact on brain function; however, the molecular bases for how exercise affects the structure and function of the brain are largely unknown. We have investigated the influences of variable periods of voluntary wheel-running on the expression of basic fibroblast growth factor and its mRNA in various brain regions. Nuclease protection assays revealed that the hippocampus was the only region examined exhibiting changes in FGF-2 mRNA as a result of exercise. FGF-2 mRNA increased to reach a peak by the 4th night of wheel-running. FGF-2 immunoreactivity, normally located in the perinuclear area of astrocytes, following exercise became stronger and appeared to spread to the cytoplasm and processes of astrocytes. Quantification of the FGF-2-immunoreactive astrocytes showed an increase in density between 2 and 4 nights of running in discrete regions of the hippocampus. These results demonstrate that exercise regulates FGF-2 expression and suggest that growth factors are likely mediators of the positive effects of exercise on the brain. q 1997 Elsevier Science B.V.
Scandinavian Journal of Medicine & Science in Sports, 2006
Voluntary physical activity and exercise training can favorably influence brain plasticity by fac... more Voluntary physical activity and exercise training can favorably influence brain plasticity by facilitating neurogenerative, neuroadaptive, and neuroprotective processes. At least some of the processes are mediated by neurotrophic factors. Motor skill training and regular exercise enhance executive functions of cognition and some types of learning, including motor learning in the spinal cord. These adaptations in the central nervous system have implications for the prevention and treatment of obesity, cancer, depression, the decline in cognition associated with aging, and neurological disorders such as Parkinson's disease, Alzheimer's dementia, ischemic stroke, and head and spinal cord injury. Chronic voluntary physical activity also attenuates neural responses to stress in brain circuits responsible for regulating peripheral sympathetic activity, suggesting constraint on sympathetic responses to stress that could plausibly contribute to reductions in clinical disorders such as hypertension, heart failure, oxidative stress, and suppression of immunity. Mechanisms explaining these adaptations are not as yet known, but metabolic and neurochemical pathways among skeletal muscle, the spinal cord, and the brain offer plausible, testable mechanisms that might help explain effects of physical activity and exercise on the central nervous system.
AbstractöWe have investigated a potential mechanism by which a diet, similar in composition to th... more AbstractöWe have investigated a potential mechanism by which a diet, similar in composition to the typical diet of most industrialized western societies rich in saturated fat and re¢ned sugar (HFS), can in£uence brain structure and function via regulation of neurotrophins. We show that animals that learn a spatial memory task faster have more brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus. Two months on the HFS diet were su⁄cient to reduce hippocampal level of BDNF and spatial learning performance. Consequent to the action of BDNF on synaptic function, downstream e¡ectors for the action of BDNF on synaptic plasticity were reduced proportionally to BDNF levels, in the hippocampus of rats maintained on the HFS diet between 2 and 24 months. In particular, animals maintained on the HFS diet showed a decrease in levels of: (i) synapsin I mRNA and protein (total and phosphorylated), important for neurotransmitter release; (ii) cyclic AMP-response element-binding protein (CREB) mRNA and protein (total and phosphorylated); CREB is required for various forms of memory and is under regulatory control of BDNF; (iii) growth-associated protein 43 mRNA, important for neurite outgrowth, neurotransmitter release, and learning and memory. Diet-related changes were speci¢c for the hippocampus consequent to its role in memory formation, and did not involve neurotrophin-3, another member of the neurotrophin family.
We have investigated the impact of neuromuscular activity on the expression of neurotrophins in t... more We have investigated the impact of neuromuscular activity on the expression of neurotrophins in the lumbar spinal cord region and innervating skeletal muscle of adult rats. Rats were exercised on a treadmill for 1 day or 5 consecutive days and euthanized at 0, 2 or 6 h after the last bout of exercise. By Day 1, there was no clear evidence of an increase in brain-derived neurotrophic factor (BDNF) mRNA in the spinal cord or the soleus muscle. By Day 5, there was a signi®cant increase in BDNF mRNA in the spinal cord at 2 h post-training, and the soleus muscle showed a robust increase between 0 and 6 h post-training. Immunoassays showed signi®cant increases in BDNF protein in the soleus muscle by training Day 5. Immunohistochemical analyses showed elevated BDNF levels in motoneuron cell bodies and axons in the ventral horn. Neurotrophin-3 (NT-3) mRNA was measured to determine whether selected neurotrophins respond with a selective pattern of induction to neuromuscular activity. In the spinal cord, there was a progressive post-training decrease in NT-3 mRNA following a single bout of training, while there was a signi®cant increase in NT-3 mRNA at 2 h post-training by Day 5. The soleus muscle showed a progressive increase in NT-3 mRNA by Days 1 and 5 following training. These results show that neuromuscular activity has speci®c effects on the BDNF and NT-3 systems, and that repetitive exercise affects the magnitude and stability of these responses.
Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysio... more Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88: 2187Neurophysiol 88: -2195Neurophysiol 88: , 2002 10.1152/jn.00152.2002. We have investigated potential mechanisms by which exercise can promote changes in neuronal plasticity via modulation of neurotrophins. Rodents were exposed to voluntary wheel running for 3 or 7 days, and their lumbar spinal cord and soleus muscle were assessed for changes in brain-derived neurotrophic factor (BDNF), its signal transduction receptor (trkB), and downstream effectors for the action of BDNF on synaptic plasticity. Exercise increased the expression of BDNF and its receptor, synapsin I (mRNA and phosphorylated protein), growthassociated protein (GAP-43) mRNA, and cyclic AMP response element-binding (CREB) mRNA in the lumbar spinal cord. Synapsin I, a synaptic mediator for the action of BDNF on neurotransmitter release, increased in proportion to GAP-43 and trkB mRNA levels. CREB mRNA levels increased in proportion to BDNF mRNA levels.
Alzheimer's disease (AD) and its hallmark, plaques, may be due to an imbalance of trophic... more Alzheimer's disease (AD) and its hallmark, plaques, may be due to an imbalance of trophic support. It has been suggested that plaque biogenesis may involve a growth factor which induces sprouting of neurites to form plaques. Thus, we studied the distribution of basic fibroblast growth factor (bFGF), in the hippocampus from AD brain and in rodent brain after entorhinal ablation. Both cases have a partial deafferentation of the hippocampus. The strongest bFGF immunoreactivity in AD was shown in plaques of the dentate gyrus. Rodent brains showed a lesion-induced increase of bFGF in the dentate gyrus, primarily localized to astrocytes. Our results indicate that bFGF may serve an important biological function in plaques and possibly attract neurites.
This study was designed to identify molecular mechanisms by which exercise affects synaptic-plast... more This study was designed to identify molecular mechanisms by which exercise affects synaptic-plasticity in the hippocampus, a brain area whose function, learning and memory, depends on this capability. We have focused on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the effects of exercise on synapticplasticity. In fact, this impact of exercise is exemplified by our finding that BDNF regulates the mRNA levels of two end products important for neural function, i.e. cAMP-responseelement binding (CREB) protein and synapsin I. CREB and synapsin I have the ability to modify neuronal function by regulating gene-transcription and affecting synaptic transmission, respectively. Furthermore, we show that BDNF is capable of concurrently increasing the mRNA levels of both itself and its tyrosine kinaseB (TrkB) receptor, suggesting that exercise may employ a feedback loop to augment the effects of BDNF on synaptic-plasticity. The use of a novel microbead injection method in our blocking experiments and Taqman reverse transcription polymerase reaction (RT-PCR) for RNA quantification, have enabled us to evaluate the contribution of different pathways to the exercise-induced increases in the mRNA levels of BDNF, TrkB, CREB, and synapsin I. We found that although BDNF mediates exerciseinduced hippocampal plasticity, additional molecules, i.e. the N-methyl-D-aspartate receptor, calcium/calmodulin protein kinase II and the mitogen-activated protein kinase cascade, modulate its effects. Since these molecules have a well-described association to BDNF action, our results illustrate a basic mechanism through which exercise may promote synaptic-plasticity in the adult brain.
Brain-derived neurotrophic factor (BDNF) promotes neuron survival, enhances sprouting, protects n... more Brain-derived neurotrophic factor (BDNF) promotes neuron survival, enhances sprouting, protects neurons against insult, and may be involved in several aspects of learning and memory. In this study, rats trained to locate a submerged platform in a water maze had elevated levels of BDNF messenger ribonucleic acid (mRNA) in the hippocampus (p < .05), a structure associated with spatial memory. BDNF mRNA expression increased after 3 and 6 days but not after 1 day of training in the water maze. A yoked control group that swam without the platform present, to control for physical activity, showed a trend for elevated BDNF mRNA at an intermediate level between the learning and sedentary groups. Other cortical and subcortical areas did not show a significant increase in BDNF mRNA after learning or activity (p > .05). These findings suggest that learning can impact BDNF mRNA expression localized to the brain areas involved in the processing of spatial information. Furthermore, behaviors such as physical activity and learning may help maintain and protect neurons at risk in aging and neurodegenerative disease via increased BDNF expression.
Voluntary exercise leads to an upregulation of brain-derived neurotrophic factor (BDNF) and assoc... more Voluntary exercise leads to an upregulation of brain-derived neurotrophic factor (BDNF) and associated proteins involved in synaptic function. Activity-induced enhancement of neuroplasticity may be considered for the treatment of traumatic brain injury (TBI). Given that during the first postinjury week the brain is undergoing dynamic restorative processes and energetic changes that may influence the outcome of exercise, we evaluated the effects of acute and delayed exercise following experimental TBI. Male Sprague-Dawley rats underwent either sham or lateral fluidpercussion injury (FPI) and were housed with or without access to a running wheel (RW) from postinjury days 0 -6 (acute) or 14 -20 (delayed). FPI alone resulted in significantly elevated levels of hippocampal phosphorylated synapsin I and phosphorylated cyclic AMP response element-bindingprotein (CREB) at postinjury day 7, of which phosphorylated CREB remained elevated at postinjury day 21. Sham and delayed FPI-RW rats showed increased levels of BDNF, following exercise. Exercise also increased phosphorylated synapsin I and CREB in sham rats. In contrast to shams, the acutely exercised FPI rats failed to show activity-dependent BDNF upregulation and had significant decreases of phosphorylated synapsin I and total CREB. Additional rats were cognitively assessed (learning acquisition and memory) by utilizing the Morris water maze after acute or delayed RW exposure. Shams and delayed FPI-RW animals benefited from exercise, as indicated by a significant decrease in the number of trials to criterion (ability to locate the platform in 7 s or less for four consecutive trials), compared with the delayed FPI-sedentary rats. In contrast, cognitive performance in the acute FPI-RW rats was significantly impaired compared with all the other groups. These results suggest that voluntary exercise can endogenously upregulate BDNF and enhance recovery when it is delayed after TBI. However, when exercise is administered to soon after TBI, the molec-ular response to exercise is disrupted and recovery may be delayed.
Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) support the viability and ... more Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) support the viability and function of many types of neurons, and are likely mediators of activity-dependent changes in the CNS. We examined BDNF and NGF mRNA levels in several brain areas of adult male rats following 0, 2, 4, or 7 nights with ad libitum access to running wheels. BDNF mRNA was significantly increased in several brain areas, most notably in the hippocampus and caudal 1/3 of cerebral cortex following 2, 4, and 7 nights with exercise. Significant elevations in BDNF mRNA were localized in Ammon's horn areas 1 (CA1) and 4 (CA4) of the hippocampus, and layers II-III of the caudal neocortex and retrosplenial cortex. NGF mRNA was also significantly elevated in the hippocampus and caudal 1/3 of the cortex, affecting primarily the dentate gyrus granular layer (DG) and CA4 of the hippocampus and layers II-III in caudal neocortex.
Engineering Applications of Artificial Intelligence, 2001
This paper considers the problem of parallel and diagonal parking in wheeled vehicles. A method t... more This paper considers the problem of parallel and diagonal parking in wheeled vehicles. A method to plan in real-time a set of collision-free manoeuvres is presented. Artificial intelligent techniques, namely fuzzy logic, play an important role in the practical ...
Exercise has been found to impact molecular systems important for maintaining neural function and... more Exercise has been found to impact molecular systems important for maintaining neural function and plasticity. A characteristic finding for the effects of exercise in the brain and spinal cord has been the up-regulation of brain-derived neurotrophic factor (BDNF). This review focuses on the ability of exercise to impact brain circuitry by promoting neuronal repair and enhance learning and memory by increasing neurotrophic support. A paragon for the role of activity-dependent neurotrophins in the CNS is the capacity of BDNF to facilitate synaptic function and neuronal excitability. The authors discuss the effects of exercise in the intact and injured brain and spinal cord injury and the implementation of exercise preinjury and postinjury. As the CNS displays a capacity for plasticity throughout one's lifespan, exercise may be a powerful lifestyle implementation that could be used to augment synaptic plasticity, promote behavioral rehabilitation, and counteract the deleterious effects of aging.
The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This stu... more The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This study reveals that the effects of exercise on brain neuronal and cognitive plasticity are in part modulated by a central source of insulin-like growth factor-I. Exercise selectively increased insulin-like growth factor-I expression without affecting insulin-like growth factor-II expression in the rat hippocampus. To determine the role that insulin-like growth factor-I holds in mediating exercise-induced neuronal and cognitive enhancement, a specific antibody against the insulin-like growth factor-I receptor was used to block the action of insulin-like growth factor-I in the hippocampus during a 5-day voluntary exercise period. A twotrial-per-day Morris water maze was performed for five consecutive days, succeeded by a probe trial 2 days later. Blocking hippocampal insulin-like growth factor-I receptors did not significantly attenuate the ability of exercise to enhance learning acquisition, but abolished the effect of exercise on augmenting recall. Blocking the insulin-like growth factor-I receptor significantly reversed the exercise-induced increase in the levels of brain-derived neurotrophic factor mRNA and protein and pro-brain-derived neurotrophic factor protein, suggesting that the effects of insulin-like growth factor-I may be partially accomplished by modulating the precursor to the mature brain-derived neurotrophic factor. A molecular analysis revealed that exercise significantly elevated proteins downstream to brain-derived neurotrophic factor activation important for synaptic function, i.e. synapsin I, and signal transduction cascades associated with memory processes, i.e. phosphorylated calcium/calmodulin protein kinase II and phosphorylated mitogen-activated protein kinase II. Blocking the insulin-like growth factor-I receptor abolished these exercise-induced increases. Our results illustrate a possible mechanism by which insulin-like growth factor-I interfaces with the brain-derived neurotrophic factor system to mediate exercise-induced synaptic and cognitive plasticity.
Studies were performed to determine the effects of acute and chronic voluntary periods of exercis... more Studies were performed to determine the effects of acute and chronic voluntary periods of exercise on the expression of hippocampal genes. RNAs from rodents exposed to a running wheel for 3, 7 and 28 days were examined using a microarray with 1176 cDNAs expressed primarily in the brain. The expression of selected genes was quanti®ed by Taqman RT-PCR or RNase protection assay. The largest up-regulation was observed in genes involved with synaptic traf®cking (synapsin I, synaptotagmin and syntaxin); signal transduction pathways (Ca 2+ /calmodulin-dependent protein kinase II, CaM-KII; mitogen-activated/ extracellular signal-regulated protein kinase, MAP-K/ERK I and II; protein kinase C, PKC-d) or transcription regulators (cyclic AMP response element binding protein, CREB). Genes associated with the glutamatergic system were up-regulated (N-methyl-Daspartate receptor, NMDAR-2A and NMDAR-2B and excitatory amino acid carrier 1, EAAC1), while genes related to the gammaaminobutyric acid (GABA) system were down-regulated (GABA A receptor, glutamate decarboxylase GAD65). Brain-derived neurotrophic factor (BDNF) was the only trophic factor whose gene was consistently up-regulated at all timepoints. These results, together with the fact that most of the genes up-regulated have a recognized interaction with BDNF, suggest a central role for BDNF on the effects of exercise on brain plasticity. The temporal pro®le of gene expression seems to delineate a mechanism by which speci®c molecular pathways are activated after exercise performance. For example, the CaM-K signal system seems to be active during acute and chronic periods of exercise, while the MAP-K/ERK system seems more important during long-term exercise.
Omega-3 fatty acids (i.e., docosahexaenoic acid; DHA) regulate signal transduction and gene expre... more Omega-3 fatty acids (i.e., docosahexaenoic acid; DHA) regulate signal transduction and gene expression, and protect neurons from death. In this study we examined the capacity of dietary omega3 fatty acids supplementation to help the brain to cope with the effects of traumatic injury. Rats were fed a regular diet or an experimental diet supplemented with omega-3 fatty acids, for 4 weeks before a mild fluid percussion injury (FPI) was performed. FPI increased oxidative stress, and impaired learning ability in the Morris water maze. This type of lesion also reduced levels of brain-derived neurotrophic factor (BDNF), synapsin I, and cAMP responsive element-binding protein (CREB). It is known that BDNF facilitates synaptic transmission and learning ability by modulating synapsin I and CREB. Supplementation of omega-3 fatty acids in the diet counteracted all of the studied effects of FPI, that is, normalized levels of BDNF and associated synapsin I and CREB, reduced oxidative damage, and counteracted learning disability. The reduction of oxidative stress indicates a benevolent effect of this diet on mechanisms that maintain neuronal function and plasticity. These results imply that omega-3 enriched dietary supplements can provide protection against reduced plasticity and impaired learning ability after traumatic brain injury.
We found that a short exercise period enhanced cognitive function on the Morris water maze (MWM),... more We found that a short exercise period enhanced cognitive function on the Morris water maze (MWM), such that exercised animals were significantly better than sedentary controls at learning and recalling the location of the platform. The finding that exercise increased brain-derived neurotrophic factor (BDNF), a molecule important for synaptic plasticity and learning and memory, impelled us to examine whether a BDNF-mediated mechanism subserves the capacity of exercise to improve hippocampal-dependent learning. A specific immunoadhesin chimera (TrkB-IgG), that mimics the BDNF receptor, TrkB, to selectively bind BDNF molecules, was used to block BDNF in the hippocampus during a 1-week voluntary exercise period. After this, a 2-trial-per-day MWM was performed for 5 consecutive days, succeeded by a probe trial 2 days later. By inhibiting BDNF action we blocked the benefit of exercise on cognitive function, such that the learning and recall abilities of exercising animals receiving the BDNF blocker were reduced to sedentary control levels. Inhibiting BDNF action also blocked the effect of exercise on downstream systems regulated by BDNF and important for synaptic plasticity, cAMP response-element-binding protein (CREB) and synapsin I. Specific to exercise, we found an association between CREB and BDNF expression and cognitive function, such that animals who were the fastest learners and had the best recall showed the highest expression of BDNF and associated CREB mRNA levels. These findings suggest a functional role for CREB under the control of BDNF in mediating the exercise-induced enhancement in learning and memory. Our results indicate that synapsin I might also contribute to this BDNF-mediated mechanism.
New evidence indicates that neural activity regulates the expression of trophic factors in the br... more New evidence indicates that neural activity regulates the expression of trophic factors in the brain but regulation of these molecules by select aspects of behaviour remains solely a fascinating possibility. We report that following training in the Morris water maze, a spatial memory task, the hippocampus and cerebellum of learning rats exhibited an increase in basic fibroblast growth factor messenger RNA. Basic fibroblast growth factor messenger RNA levels were higher during the learning of the task and decreased once asymptotic performance was reached, suggesting an involvement of basic fibroblast growth factor in learning/memory. An active control group, which exercised for the same time as the learning group but the spatial learning component of the task was minimized, exhibited a minor increase in basic fibroblast growth factor messenger RNA. The intensification of the physical activity component of the task by massed or intensive training resulted in greater increases in basic fibroblast growth factor messenger RNA for both learning and yoked groups, but levels of basic fibroblast growth factor messenger RNA in the learning group remained higher than yoked only in the cerebellum. Changes in basic fibroblast growth factor were accompanied by an increase in astrocyte density in the hippocampus in agreement with described roles of basic fibroblast growth factor in astrocyte proliferation/reactivity.
We have conducted studies to determine the potential of exercise to benefit the injured spinal co... more We have conducted studies to determine the potential of exercise to benefit the injured spinal cord using neurotrophins. Adult rats were randomly assigned to one of three groups: (1) intact control (Con); (2) sedentary, hemisected at a mid-thoracic level (Sed-Hx), or (3) exercised, hemisected (Ex-Hx). One week after surgery, the Ex-Hx rats were exposed to voluntary running wheels for 3, 7, or 28 days. BDNF mRNA levels on the lesioned side of the spinal cord lumbar region of Sed-Hx rats were~80% of Con values at all time points and BDNF protein levels were~40% of Con at 28 days. Exercise compensated for the reductions in BDNF after hemisection, such that BDNF mRNA levels in the Ex-Hx rats were similar to Con after 3 days and higher than Con after 7 (17%) and 28 (27%) days of exercise. After 28 days of exercise, BDNF protein levels were 33% higher in Ex-Hx than Con rats and were highly correlated (r = 0.86) to running distance. The levels of the downstream effectors for the action of BDNF on synaptic plasticity synapsin I and CREB were lower in Sed-Hx than Con rats at all time points. Synapsin I mRNA and protein levels were higher in Ex-Hx rats than Sed-Hx rats and similar to Con rats at 28 days. CREB mRNA values were higher in Ex-Hx than Sed-Hx rats at all time points. Hemisection had no significant effects on the levels of NT-3 mRNA or protein; however, voluntary exercise resulted in an increase in NT-3 mRNA levels after 28 days (145%). These results are consistent with the concept that synaptic pathways under the regulatory role of BDNF induced by exercise can play a role in facilitating recovery of locomotion following spinal cord injury. D
Clinical and experimental evidence indicate that physical activity has a positive impact on brain... more Clinical and experimental evidence indicate that physical activity has a positive impact on brain function; however, the molecular bases for how exercise affects the structure and function of the brain are largely unknown. We have investigated the influences of variable periods of voluntary wheel-running on the expression of basic fibroblast growth factor and its mRNA in various brain regions. Nuclease protection assays revealed that the hippocampus was the only region examined exhibiting changes in FGF-2 mRNA as a result of exercise. FGF-2 mRNA increased to reach a peak by the 4th night of wheel-running. FGF-2 immunoreactivity, normally located in the perinuclear area of astrocytes, following exercise became stronger and appeared to spread to the cytoplasm and processes of astrocytes. Quantification of the FGF-2-immunoreactive astrocytes showed an increase in density between 2 and 4 nights of running in discrete regions of the hippocampus. These results demonstrate that exercise regulates FGF-2 expression and suggest that growth factors are likely mediators of the positive effects of exercise on the brain. q 1997 Elsevier Science B.V.
Scandinavian Journal of Medicine & Science in Sports, 2006
Voluntary physical activity and exercise training can favorably influence brain plasticity by fac... more Voluntary physical activity and exercise training can favorably influence brain plasticity by facilitating neurogenerative, neuroadaptive, and neuroprotective processes. At least some of the processes are mediated by neurotrophic factors. Motor skill training and regular exercise enhance executive functions of cognition and some types of learning, including motor learning in the spinal cord. These adaptations in the central nervous system have implications for the prevention and treatment of obesity, cancer, depression, the decline in cognition associated with aging, and neurological disorders such as Parkinson's disease, Alzheimer's dementia, ischemic stroke, and head and spinal cord injury. Chronic voluntary physical activity also attenuates neural responses to stress in brain circuits responsible for regulating peripheral sympathetic activity, suggesting constraint on sympathetic responses to stress that could plausibly contribute to reductions in clinical disorders such as hypertension, heart failure, oxidative stress, and suppression of immunity. Mechanisms explaining these adaptations are not as yet known, but metabolic and neurochemical pathways among skeletal muscle, the spinal cord, and the brain offer plausible, testable mechanisms that might help explain effects of physical activity and exercise on the central nervous system.
AbstractöWe have investigated a potential mechanism by which a diet, similar in composition to th... more AbstractöWe have investigated a potential mechanism by which a diet, similar in composition to the typical diet of most industrialized western societies rich in saturated fat and re¢ned sugar (HFS), can in£uence brain structure and function via regulation of neurotrophins. We show that animals that learn a spatial memory task faster have more brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus. Two months on the HFS diet were su⁄cient to reduce hippocampal level of BDNF and spatial learning performance. Consequent to the action of BDNF on synaptic function, downstream e¡ectors for the action of BDNF on synaptic plasticity were reduced proportionally to BDNF levels, in the hippocampus of rats maintained on the HFS diet between 2 and 24 months. In particular, animals maintained on the HFS diet showed a decrease in levels of: (i) synapsin I mRNA and protein (total and phosphorylated), important for neurotransmitter release; (ii) cyclic AMP-response element-binding protein (CREB) mRNA and protein (total and phosphorylated); CREB is required for various forms of memory and is under regulatory control of BDNF; (iii) growth-associated protein 43 mRNA, important for neurite outgrowth, neurotransmitter release, and learning and memory. Diet-related changes were speci¢c for the hippocampus consequent to its role in memory formation, and did not involve neurotrophin-3, another member of the neurotrophin family.
We have investigated the impact of neuromuscular activity on the expression of neurotrophins in t... more We have investigated the impact of neuromuscular activity on the expression of neurotrophins in the lumbar spinal cord region and innervating skeletal muscle of adult rats. Rats were exercised on a treadmill for 1 day or 5 consecutive days and euthanized at 0, 2 or 6 h after the last bout of exercise. By Day 1, there was no clear evidence of an increase in brain-derived neurotrophic factor (BDNF) mRNA in the spinal cord or the soleus muscle. By Day 5, there was a signi®cant increase in BDNF mRNA in the spinal cord at 2 h post-training, and the soleus muscle showed a robust increase between 0 and 6 h post-training. Immunoassays showed signi®cant increases in BDNF protein in the soleus muscle by training Day 5. Immunohistochemical analyses showed elevated BDNF levels in motoneuron cell bodies and axons in the ventral horn. Neurotrophin-3 (NT-3) mRNA was measured to determine whether selected neurotrophins respond with a selective pattern of induction to neuromuscular activity. In the spinal cord, there was a progressive post-training decrease in NT-3 mRNA following a single bout of training, while there was a signi®cant increase in NT-3 mRNA at 2 h post-training by Day 5. The soleus muscle showed a progressive increase in NT-3 mRNA by Days 1 and 5 following training. These results show that neuromuscular activity has speci®c effects on the BDNF and NT-3 systems, and that repetitive exercise affects the magnitude and stability of these responses.
Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysio... more Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88: 2187Neurophysiol 88: -2195Neurophysiol 88: , 2002 10.1152/jn.00152.2002. We have investigated potential mechanisms by which exercise can promote changes in neuronal plasticity via modulation of neurotrophins. Rodents were exposed to voluntary wheel running for 3 or 7 days, and their lumbar spinal cord and soleus muscle were assessed for changes in brain-derived neurotrophic factor (BDNF), its signal transduction receptor (trkB), and downstream effectors for the action of BDNF on synaptic plasticity. Exercise increased the expression of BDNF and its receptor, synapsin I (mRNA and phosphorylated protein), growthassociated protein (GAP-43) mRNA, and cyclic AMP response element-binding (CREB) mRNA in the lumbar spinal cord. Synapsin I, a synaptic mediator for the action of BDNF on neurotransmitter release, increased in proportion to GAP-43 and trkB mRNA levels. CREB mRNA levels increased in proportion to BDNF mRNA levels.
Alzheimer's disease (AD) and its hallmark, plaques, may be due to an imbalance of trophic... more Alzheimer's disease (AD) and its hallmark, plaques, may be due to an imbalance of trophic support. It has been suggested that plaque biogenesis may involve a growth factor which induces sprouting of neurites to form plaques. Thus, we studied the distribution of basic fibroblast growth factor (bFGF), in the hippocampus from AD brain and in rodent brain after entorhinal ablation. Both cases have a partial deafferentation of the hippocampus. The strongest bFGF immunoreactivity in AD was shown in plaques of the dentate gyrus. Rodent brains showed a lesion-induced increase of bFGF in the dentate gyrus, primarily localized to astrocytes. Our results indicate that bFGF may serve an important biological function in plaques and possibly attract neurites.
This study was designed to identify molecular mechanisms by which exercise affects synaptic-plast... more This study was designed to identify molecular mechanisms by which exercise affects synaptic-plasticity in the hippocampus, a brain area whose function, learning and memory, depends on this capability. We have focused on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the effects of exercise on synapticplasticity. In fact, this impact of exercise is exemplified by our finding that BDNF regulates the mRNA levels of two end products important for neural function, i.e. cAMP-responseelement binding (CREB) protein and synapsin I. CREB and synapsin I have the ability to modify neuronal function by regulating gene-transcription and affecting synaptic transmission, respectively. Furthermore, we show that BDNF is capable of concurrently increasing the mRNA levels of both itself and its tyrosine kinaseB (TrkB) receptor, suggesting that exercise may employ a feedback loop to augment the effects of BDNF on synaptic-plasticity. The use of a novel microbead injection method in our blocking experiments and Taqman reverse transcription polymerase reaction (RT-PCR) for RNA quantification, have enabled us to evaluate the contribution of different pathways to the exercise-induced increases in the mRNA levels of BDNF, TrkB, CREB, and synapsin I. We found that although BDNF mediates exerciseinduced hippocampal plasticity, additional molecules, i.e. the N-methyl-D-aspartate receptor, calcium/calmodulin protein kinase II and the mitogen-activated protein kinase cascade, modulate its effects. Since these molecules have a well-described association to BDNF action, our results illustrate a basic mechanism through which exercise may promote synaptic-plasticity in the adult brain.
Brain-derived neurotrophic factor (BDNF) promotes neuron survival, enhances sprouting, protects n... more Brain-derived neurotrophic factor (BDNF) promotes neuron survival, enhances sprouting, protects neurons against insult, and may be involved in several aspects of learning and memory. In this study, rats trained to locate a submerged platform in a water maze had elevated levels of BDNF messenger ribonucleic acid (mRNA) in the hippocampus (p < .05), a structure associated with spatial memory. BDNF mRNA expression increased after 3 and 6 days but not after 1 day of training in the water maze. A yoked control group that swam without the platform present, to control for physical activity, showed a trend for elevated BDNF mRNA at an intermediate level between the learning and sedentary groups. Other cortical and subcortical areas did not show a significant increase in BDNF mRNA after learning or activity (p > .05). These findings suggest that learning can impact BDNF mRNA expression localized to the brain areas involved in the processing of spatial information. Furthermore, behaviors such as physical activity and learning may help maintain and protect neurons at risk in aging and neurodegenerative disease via increased BDNF expression.
Voluntary exercise leads to an upregulation of brain-derived neurotrophic factor (BDNF) and assoc... more Voluntary exercise leads to an upregulation of brain-derived neurotrophic factor (BDNF) and associated proteins involved in synaptic function. Activity-induced enhancement of neuroplasticity may be considered for the treatment of traumatic brain injury (TBI). Given that during the first postinjury week the brain is undergoing dynamic restorative processes and energetic changes that may influence the outcome of exercise, we evaluated the effects of acute and delayed exercise following experimental TBI. Male Sprague-Dawley rats underwent either sham or lateral fluidpercussion injury (FPI) and were housed with or without access to a running wheel (RW) from postinjury days 0 -6 (acute) or 14 -20 (delayed). FPI alone resulted in significantly elevated levels of hippocampal phosphorylated synapsin I and phosphorylated cyclic AMP response element-bindingprotein (CREB) at postinjury day 7, of which phosphorylated CREB remained elevated at postinjury day 21. Sham and delayed FPI-RW rats showed increased levels of BDNF, following exercise. Exercise also increased phosphorylated synapsin I and CREB in sham rats. In contrast to shams, the acutely exercised FPI rats failed to show activity-dependent BDNF upregulation and had significant decreases of phosphorylated synapsin I and total CREB. Additional rats were cognitively assessed (learning acquisition and memory) by utilizing the Morris water maze after acute or delayed RW exposure. Shams and delayed FPI-RW animals benefited from exercise, as indicated by a significant decrease in the number of trials to criterion (ability to locate the platform in 7 s or less for four consecutive trials), compared with the delayed FPI-sedentary rats. In contrast, cognitive performance in the acute FPI-RW rats was significantly impaired compared with all the other groups. These results suggest that voluntary exercise can endogenously upregulate BDNF and enhance recovery when it is delayed after TBI. However, when exercise is administered to soon after TBI, the molec-ular response to exercise is disrupted and recovery may be delayed.
Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) support the viability and ... more Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) support the viability and function of many types of neurons, and are likely mediators of activity-dependent changes in the CNS. We examined BDNF and NGF mRNA levels in several brain areas of adult male rats following 0, 2, 4, or 7 nights with ad libitum access to running wheels. BDNF mRNA was significantly increased in several brain areas, most notably in the hippocampus and caudal 1/3 of cerebral cortex following 2, 4, and 7 nights with exercise. Significant elevations in BDNF mRNA were localized in Ammon's horn areas 1 (CA1) and 4 (CA4) of the hippocampus, and layers II-III of the caudal neocortex and retrosplenial cortex. NGF mRNA was also significantly elevated in the hippocampus and caudal 1/3 of the cortex, affecting primarily the dentate gyrus granular layer (DG) and CA4 of the hippocampus and layers II-III in caudal neocortex.
Uploads
Papers by fernando gomez