Ferritic oxide dispersion strengthened steels with different microstructure were in-beam creep te... more Ferritic oxide dispersion strengthened steels with different microstructure were in-beam creep tested in a temperature range from 300 °C to 500 °C. Irradiation was by He-ions. Elongation was determined as a function of stress and irradiation damage rate. Damage was investigated by transmission electron microscopy. A thorough analysis of the loops developing during irradiation creep did not show any dependence of orientation or size on the direction of the applied stress. At 400 °C radiation induced segregation was found (most probably an iron aluminide) which had no effect on irradiation creep. No pronounced influence of microstructure or dispersoid size on the irradiation creep behavior was detected. Irradiation creep compliance of PM2000 with dispersoids of about 30 nm diameter were found to differ little from material with dispersoids of only 2–3 nm diameter. This is in contrast to thermal creep where dislocation–obstacle interactions are extremely important. An assessment of the technical relevance of irradiation creep in advanced nuclear systems is presented.
This scientific assessment serves as the basis for a materials research roadmap for the nuclear f... more This scientific assessment serves as the basis for a materials research roadmap for the nuclear fission technology, itself an integral element of an overall "Materials Roadmap Enabling Low Carbon Technologies", a Commission Staff Working Document published in December 2011. The Materials Roadmap aims at contributing to strategic decisions on materials research funding at European and Member State levels and is aligned with the priorities of the Strategic Energy Technology Plan (SET-Plan). It is intended to serve as a guide for developing specific research and development activities in the field of materials for energy applications over the next 10 years. This report provides an in-depth analysis of the state-of-the-art and future challenges for energy technologyrelated materials and the needs for research activities to support the development of nuclear fission technology both for the 2020 and the 2050 market horizons. It has been produced by independent and renowned Europ...
ABSTRACTPlasma processes become more and more attractive for the treatment of radioactive low/med... more ABSTRACTPlasma processes become more and more attractive for the treatment of radioactive low/medium level waste. Plants with throughput rates ranging from 20 kilograms to several hundred kilograms per hour are under construction or under evaluation in different countries. One major installation is under construction at the ZWILAG-site in Wurenlingen (Switzerland). ZWILAG (Zwischenlager Wurenlingen AG) is a company being responsible for treatment and intermediate storage of all radioactive wastes occurring in Switzerland. Thermal destruction (pyrolysis) of organic material and melting of the inorganic residuals and inorganic feed stock can be done simultaneously in a plasma heated vessel. The following output materials are obtained: Metal, glassy slag, off-gas. Depending on feed stock and storage requirements these outputs can have different properties. The distribution of the activity is of particular importance. Isotopes like cobalt-60 (as a metal) partition almost quantitatively ...
Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 2, 2008
Advanced nuclear plants are designed for long-term operation in quite demanding environments. Lim... more Advanced nuclear plants are designed for long-term operation in quite demanding environments. Limited operation experience with the materials used in such plants necessitate a reliable assessment of damage and residual life of components. Non-destructive condition monitoring of damage is difficult, if not impossible for many materials. Periodic investigation of small samples taken from well defined locations in the plant could provide an attractive tool for damage assessments. This paper will discuss possibilities of using very small samples taken from plant locations for complementary condition monitoring. Techniques such as micro/nano-indentation, micropillar compression, micro bending, small punch and thin strip testing can be used for the determination of local mechanical properties. Advanced preparation techniques such as focused ion beam (FIB) allow the preparation of samples from these small volumes for micro-structural analyses with transmission electron microscope (TEM) and...
Ferritic oxide dispersion strengthened steels with different microstructure were in-beam creep te... more Ferritic oxide dispersion strengthened steels with different microstructure were in-beam creep tested in a temperature range from 300 °C to 500 °C. Irradiation was by He-ions. Elongation was determined as a function of stress and irradiation damage rate. Damage was investigated by transmission electron microscopy. A thorough analysis of the loops developing during irradiation creep did not show any dependence of orientation or size on the direction of the applied stress. At 400 °C radiation induced segregation was found (most probably an iron aluminide) which had no effect on irradiation creep. No pronounced influence of microstructure or dispersoid size on the irradiation creep behavior was detected. Irradiation creep compliance of PM2000 with dispersoids of about 30 nm diameter were found to differ little from material with dispersoids of only 2–3 nm diameter. This is in contrast to thermal creep where dislocation–obstacle interactions are extremely important. An assessment of the technical relevance of irradiation creep in advanced nuclear systems is presented.
This scientific assessment serves as the basis for a materials research roadmap for the nuclear f... more This scientific assessment serves as the basis for a materials research roadmap for the nuclear fission technology, itself an integral element of an overall "Materials Roadmap Enabling Low Carbon Technologies", a Commission Staff Working Document published in December 2011. The Materials Roadmap aims at contributing to strategic decisions on materials research funding at European and Member State levels and is aligned with the priorities of the Strategic Energy Technology Plan (SET-Plan). It is intended to serve as a guide for developing specific research and development activities in the field of materials for energy applications over the next 10 years. This report provides an in-depth analysis of the state-of-the-art and future challenges for energy technologyrelated materials and the needs for research activities to support the development of nuclear fission technology both for the 2020 and the 2050 market horizons. It has been produced by independent and renowned Europ...
ABSTRACTPlasma processes become more and more attractive for the treatment of radioactive low/med... more ABSTRACTPlasma processes become more and more attractive for the treatment of radioactive low/medium level waste. Plants with throughput rates ranging from 20 kilograms to several hundred kilograms per hour are under construction or under evaluation in different countries. One major installation is under construction at the ZWILAG-site in Wurenlingen (Switzerland). ZWILAG (Zwischenlager Wurenlingen AG) is a company being responsible for treatment and intermediate storage of all radioactive wastes occurring in Switzerland. Thermal destruction (pyrolysis) of organic material and melting of the inorganic residuals and inorganic feed stock can be done simultaneously in a plasma heated vessel. The following output materials are obtained: Metal, glassy slag, off-gas. Depending on feed stock and storage requirements these outputs can have different properties. The distribution of the activity is of particular importance. Isotopes like cobalt-60 (as a metal) partition almost quantitatively ...
Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 2, 2008
Advanced nuclear plants are designed for long-term operation in quite demanding environments. Lim... more Advanced nuclear plants are designed for long-term operation in quite demanding environments. Limited operation experience with the materials used in such plants necessitate a reliable assessment of damage and residual life of components. Non-destructive condition monitoring of damage is difficult, if not impossible for many materials. Periodic investigation of small samples taken from well defined locations in the plant could provide an attractive tool for damage assessments. This paper will discuss possibilities of using very small samples taken from plant locations for complementary condition monitoring. Techniques such as micro/nano-indentation, micropillar compression, micro bending, small punch and thin strip testing can be used for the determination of local mechanical properties. Advanced preparation techniques such as focused ion beam (FIB) allow the preparation of samples from these small volumes for micro-structural analyses with transmission electron microscope (TEM) and...
Uploads
Papers by wolfgang hoffelner