African swine fever (ASF) has emerged as a major threat to domestic and wild suid populations, an... more African swine fever (ASF) has emerged as a major threat to domestic and wild suid populations, and its continued spread threatens commercial swine production worldwide. The causative agent of ASF, African swine fever virus (ASFV), possesses a linear, double stranded DNA genome. Traditional detection of ASFV relies on laboratorybased virus isolation or real-time PCR of samples, typically blood or spleen, obtained from suspect cases. While effective, these methodologies are not easily field deployable, a major limitation during disease outbreak and response management scenarios. In this report, we evaluated the MatMaCorp Solas 8 ® ASFV detection system, a field deployable DNA extraction and fluorescent detection device, for its ability to extract and detect ASFV from multiple sample types obtained from domestic swine experimentally infected with ASFV strain Georgia. We found that the MatMaCorp Solas 8 ® ASFV detection device, and affiliated MagicTip™ DNA extraction and C-SAND™ assay kits, readily detected ASFV in blood and spleen, as well as other sample types, including pinna, liver, skin, muscle and bone marrow.
Comparative immunology, microbiology and infectious diseases, 2014
Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infec... more Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infected cells and producing antiviral cytokines such as interferon gamma (IFN-γ). We developed a system for characterizing the bovine NK response to foot-and-mouth disease virus (FMDV), which causes a disease of cloven-hoofed animals and remains a threat to livestock industries throughout the world. IL-2 stimulation of PBMC resulted in poor killing of human K562 cells, which are often used as NK target cells, while lysis of the bovine BL3.1 cell line was readily detected. Depletion of NKp46-expressing cells revealed that 80% of the killing induced by IL-2 could be attributed to NKp46(+) cells. In order to characterize the response of NK cells against FMDV in vivo, we infected groups of cattle with three different strains of the virus (A24 Cruzeiro, O1 Manisa, O Hong Kong) and evaluated the cytolytic ability of NK cells through the course of infection. We consistently observed a transient inc...
A pilot study was carried out in cattle to determine the immunogenicity of a synthetic consensus ... more A pilot study was carried out in cattle to determine the immunogenicity of a synthetic consensus peptide comprising the G-H loop region of foot-and-mouth disease virus (FMDV) type-O VP1 and a non-VP1 T-helper (Th) epitope. Cattle vaccinated intramuscularly either once (n = 5) or twice (n = 4) with 50 g of the peptide preparation at a 21-day interval developed antibodies to the peptide as determined by ELISA with the exception of one steer that received a single dose. However, neutralizing antibody titers against FMDV type-O were modest and all animals presented with clinical FMD signs upon challenge 21 days after the last vaccination. In contrast, four of the five animals inoculated with an inactivated FMD type-O commercially prepared vaccine developed neutralizing antibodies and were fully protected against clinical disease following virus challenge 21 days post-vaccination (dpv). Nucleotide sequence comparison of the VP1 region between the challenge virus and RT-PCR products recovered from a lesion of the peptide-vaccinated animal with the highest neutralizing antibody titer 5 days post-challenge (dpc) showed no evidence for selection of a neutralization-resistant mutant. We conclude that although the synthetic peptide induced an antibody response in cattle, it failed to confer protection against FMDV challenge.
A large number of the world&a... more A large number of the world's most widespread and problematic pathogens evade host immune responses by inducing strain-specific immunity to immunodominant epitopes with high mutation rates capable of altering antigenic profiles. The immune system appears to be decoyed into reacting to these immunodominant epitopes that offer little cross protection between serotypes or subtypes. For example, during HIV-1 infection, the immune system reacts strongly to the V1, V2, and/or V3 loops of the surface envelope glycoprotein but not to epitopes that afford broad protection against strain variants. Similarly, the host mounts strain-specific immunity to immunodominant epitopes of the influenza hemagglutinin (HA) protein. A large number of pathogens appear to exploit this weakness in the host immune system by focusing antigenic attention upon highly variable epitopes while avoiding surveillance toward more highly conserved receptor binding sites or other essential functional domains. Because the propensity of the immune system to react against immunodominant strain-specific epitopes appears to be genetically hard-wired, the phenomenon has been termed "deceptive imprinting." In this review, the authors describe observations related to deceptive imprinting in multiple systems and propose strategies for overcoming this phenomenon in the design of vaccines capable of inducing protection against highly variable pathogens.
The results of the first decade of the development of a replication-defective human adenovirus se... more The results of the first decade of the development of a replication-defective human adenovirus serotype 5 (Ad5) containing the capsid- and 3C protease-coding regions of foot-and-mouth disease (FMD) virus as a vaccine candidate are presented. In proof-of-concept studies, it was demonstrated that a single inoculation with this vaccine vector containing the capsid of FMD virus A24 Cruzeiro protected both swine and cattle following homologous challenge by direct inoculation 1 week postvaccination. We have expanded these studies in cattle with larger numbers of animals and by testing the vaccine in direct-contact challenge studies, including its ability to prevent FMD virus shedding and transmission. Furthermore, we have developed manufacturing protocols to allow the scalable production of these FMD molecular vaccine products for US Department of Agriculture licensure approval and availability for inclusion in the US National Veterinary Stockpile. We have also constructed and initiated c...
African swine fever (ASF) has emerged as a major threat to domestic and wild suid populations, an... more African swine fever (ASF) has emerged as a major threat to domestic and wild suid populations, and its continued spread threatens commercial swine production worldwide. The causative agent of ASF, African swine fever virus (ASFV), possesses a linear, double stranded DNA genome. Traditional detection of ASFV relies on laboratorybased virus isolation or real-time PCR of samples, typically blood or spleen, obtained from suspect cases. While effective, these methodologies are not easily field deployable, a major limitation during disease outbreak and response management scenarios. In this report, we evaluated the MatMaCorp Solas 8 ® ASFV detection system, a field deployable DNA extraction and fluorescent detection device, for its ability to extract and detect ASFV from multiple sample types obtained from domestic swine experimentally infected with ASFV strain Georgia. We found that the MatMaCorp Solas 8 ® ASFV detection device, and affiliated MagicTip™ DNA extraction and C-SAND™ assay kits, readily detected ASFV in blood and spleen, as well as other sample types, including pinna, liver, skin, muscle and bone marrow.
Comparative immunology, microbiology and infectious diseases, 2014
Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infec... more Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infected cells and producing antiviral cytokines such as interferon gamma (IFN-γ). We developed a system for characterizing the bovine NK response to foot-and-mouth disease virus (FMDV), which causes a disease of cloven-hoofed animals and remains a threat to livestock industries throughout the world. IL-2 stimulation of PBMC resulted in poor killing of human K562 cells, which are often used as NK target cells, while lysis of the bovine BL3.1 cell line was readily detected. Depletion of NKp46-expressing cells revealed that 80% of the killing induced by IL-2 could be attributed to NKp46(+) cells. In order to characterize the response of NK cells against FMDV in vivo, we infected groups of cattle with three different strains of the virus (A24 Cruzeiro, O1 Manisa, O Hong Kong) and evaluated the cytolytic ability of NK cells through the course of infection. We consistently observed a transient inc...
A pilot study was carried out in cattle to determine the immunogenicity of a synthetic consensus ... more A pilot study was carried out in cattle to determine the immunogenicity of a synthetic consensus peptide comprising the G-H loop region of foot-and-mouth disease virus (FMDV) type-O VP1 and a non-VP1 T-helper (Th) epitope. Cattle vaccinated intramuscularly either once (n = 5) or twice (n = 4) with 50 g of the peptide preparation at a 21-day interval developed antibodies to the peptide as determined by ELISA with the exception of one steer that received a single dose. However, neutralizing antibody titers against FMDV type-O were modest and all animals presented with clinical FMD signs upon challenge 21 days after the last vaccination. In contrast, four of the five animals inoculated with an inactivated FMD type-O commercially prepared vaccine developed neutralizing antibodies and were fully protected against clinical disease following virus challenge 21 days post-vaccination (dpv). Nucleotide sequence comparison of the VP1 region between the challenge virus and RT-PCR products recovered from a lesion of the peptide-vaccinated animal with the highest neutralizing antibody titer 5 days post-challenge (dpc) showed no evidence for selection of a neutralization-resistant mutant. We conclude that although the synthetic peptide induced an antibody response in cattle, it failed to confer protection against FMDV challenge.
A large number of the world&a... more A large number of the world's most widespread and problematic pathogens evade host immune responses by inducing strain-specific immunity to immunodominant epitopes with high mutation rates capable of altering antigenic profiles. The immune system appears to be decoyed into reacting to these immunodominant epitopes that offer little cross protection between serotypes or subtypes. For example, during HIV-1 infection, the immune system reacts strongly to the V1, V2, and/or V3 loops of the surface envelope glycoprotein but not to epitopes that afford broad protection against strain variants. Similarly, the host mounts strain-specific immunity to immunodominant epitopes of the influenza hemagglutinin (HA) protein. A large number of pathogens appear to exploit this weakness in the host immune system by focusing antigenic attention upon highly variable epitopes while avoiding surveillance toward more highly conserved receptor binding sites or other essential functional domains. Because the propensity of the immune system to react against immunodominant strain-specific epitopes appears to be genetically hard-wired, the phenomenon has been termed "deceptive imprinting." In this review, the authors describe observations related to deceptive imprinting in multiple systems and propose strategies for overcoming this phenomenon in the design of vaccines capable of inducing protection against highly variable pathogens.
The results of the first decade of the development of a replication-defective human adenovirus se... more The results of the first decade of the development of a replication-defective human adenovirus serotype 5 (Ad5) containing the capsid- and 3C protease-coding regions of foot-and-mouth disease (FMD) virus as a vaccine candidate are presented. In proof-of-concept studies, it was demonstrated that a single inoculation with this vaccine vector containing the capsid of FMD virus A24 Cruzeiro protected both swine and cattle following homologous challenge by direct inoculation 1 week postvaccination. We have expanded these studies in cattle with larger numbers of animals and by testing the vaccine in direct-contact challenge studies, including its ability to prevent FMD virus shedding and transmission. Furthermore, we have developed manufacturing protocols to allow the scalable production of these FMD molecular vaccine products for US Department of Agriculture licensure approval and availability for inclusion in the US National Veterinary Stockpile. We have also constructed and initiated c...
Uploads
Papers by jose barrera