Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
pappu das

    pappu das

    High-throughput tests for early cancer detection can revolutionize public health and reduce cancer morbidity and mortality. Here we show a DNA methylation signature for hepatocellular carcinoma (HCC) detection in liquid biopsies, distinct... more
    High-throughput tests for early cancer detection can revolutionize public health and reduce cancer morbidity and mortality. Here we show a DNA methylation signature for hepatocellular carcinoma (HCC) detection in liquid biopsies, distinct from normal tissues and blood profiles. We developed a classifier using four CpG sites, validated in TCGA HCC data. A single F12 gene CpG site effectively differentiates HCC samples from other blood samples, normal tissues, and non-HCC tumors in TCGA and GEO data repositories. The markers were validated in a separate plasma sample dataset from HCC patients and controls. We designed a high-throughput assay using next-generation sequencing and multiplexing techniques, analyzing plasma samples from 554 clinical study participants, including HCC patients, non-HCC cancers, chronic hepatitis B, and healthy controls. HCC detection sensitivity was 84.5% at 95% specificity and 0.94 AUC. Implementing this assay for high-risk individuals could significantly d...
    Robust cost effective and high-throughput tests for early detection of cancer in otherwise healthy people could potentially revolutionize public-health and the heavy personal and public burden of the morbidity and mortality from cancer.... more
    Robust cost effective and high-throughput tests for early detection of cancer in otherwise healthy people could potentially revolutionize public-health and the heavy personal and public burden of the morbidity and mortality from cancer. Several studies have delineated tumor specific DNA methylation profiles that could serve as biomarkers for early detection of Hepatocellular Carcinoma (HCC) as well as other cancers in liquid biopsies. Several published DNA methylation markers fail to distinguish HCC DNA from DNA from other tissues and other cancers that are potentially present in plasma. We describe a set of DNA methylation signatures in HCC that are “categorically” distinct from normal tissues and blood DNA methylation profiles. We develop a classifier combined of 4 CG sites that is sufficient to detect HCC in TCGA HCC data set at high accuracy. A single CG site at the F12 gene is sufficient to differentiate HCC samples from thousands of other blood samples, normal tissues and 31 t...