I am interested in population genetics and its application to understand the evolutionary history and genetic characteristics of species. I am currently working on statistical methods to obtain information on the demographic history (population size, migration) of population from molecular data. I recently started studying the effects of partial asexual reproduction and self-incompatibility systems on genetic diversity and fitness of populations. My past research was mainly focused on population genetics of forest trees but I am interested in any type of organism that can offer an interesting challenge to study. Phone: +33499623370 Address: UMR1062 Centre de Biologie pour la Gestion des Populations
Institut National de la Recherche Agronomique
Campus International de Baillarguet, CS 30016
34988 Montferrier-sur-Lez (France)
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos. K E Y W O R D S : Avian evolution, gene flow, lack of diversification, Macaronesia, oceanic islands.
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Chloroplast microsatellites are becoming increasingly popular markers for population genetic stud... more Chloroplast microsatellites are becoming increasingly popular markers for population genetic studies in plants, but there has been little focus on their potential for demographic inference. In this work the utility of chloroplast microsatellites for the study of population expansions was explored. First, we investigated the power of mismatch distribution analysis and the F(S) test with coalescent simulations of different demographic scenarios. We then applied these methods to empirical data obtained for the Canary Island pine (Pinus canariensis). The results of the simulations showed that chloroplast microsatellites are sensitive to sudden population growth. The power of the F(S) test and accuracy of demographic parameter estimates, such as the time of expansion, were reduced proportionally to the level of homoplasy within the data. The analysis of Canary Island pine chloroplast microsatellite data indicated population expansions for almost all sample localities. Demographic expansi...
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Background: Determining the presence or absence of gene flow between populations is the target of... more Background: Determining the presence or absence of gene flow between populations is the target of some statistical methods in population genetics. Until recently, these methods either avoided the use of recombining genes, or treated recombination as a nuisance parameter. However, genes with recombination contribute additional information for the detection of gene flow (i.e. through linkage disequilibrium).
Methods: We present three summary statistics based on the spatial arrangement of fixed differences, and shared and exclusive polymorphisms that are sensitive to the presence and direction of gene flow. Power and false positive rate for tests based on these statistics are studied by simulation.
Results: The application of these tests to populations from the Drosophila simulans species complex yielded results consistent with migration between D. simulans and its two endemic sister species D. mauritiana and D. sechellia, and between populations D. mauritiana on the islands of the Mauritius and Rodrigues.
Conclusions: We demonstrate the sensitivity of the developed statistics to the presence and direction of gene flow, and characterize their power as a function of differentiation level and recombination rate. The properties of these statistics make them especially suitable for analyzing high-throughput sequencing data or for their integration within the approximate Bayesian computation framework.
The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging... more The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging field, as traditional analytical tools were largely developed for the purpose of analysing data sampled from a single time point. Markov chain Monte Carlo approaches have been successfully developed for the analysis of heterochronous sequence data from closed panmictic populations. However, attributing genetic differences between temporal samples to mutational events between time points requires the consideration of other factors that may also result in genetic differentiation. Geographical effects are an obvious factor for species exhibiting geographical structuring of genetic variation. The departure from a closed panmictic model require researchers to either exploit software developed for the analysis of isochronous data, take advantage of simulation approaches using algorithms developed for heterochronous data, or explore approximate Bayesian computation. Here, we review statistical approaches employed and available software for the joint analysis of ancient and modern DNA, and where appropriate we suggest how these may be further developed.
In order to empirically assess the effect of actual seed sampling strategy on genetic diversity o... more In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe $\approx$ 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne $\approx$ 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees.
The increasing ability to extract and sequence DNA from noncontemporaneous tissue offers biologis... more The increasing ability to extract and sequence DNA from noncontemporaneous tissue offers biologists the opportunity to analyse ancient DNA (aDNA) together with modern DNA (mDNA) to address the taxonomy of extinct species, evolutionary origins, historical phylogeography and biogeography. Perhaps more exciting are recent developments in coalescence-based Bayesian inference that offer the potential to use temporal information from aDNA and mDNA for the estimation of substitution rates and divergence dates as an alternative to fossil and geological calibration. This comes at a time of growing interest in the possibility of time dependency for molecular rate estimates. In this study, we provide a critical assessment of Bayesian Markov chain Monte Carlo (MCMC) analysis for the estimation of substitution rate using simulated samples of aDNA and mDNA. We conclude that the current models and priors employed in Bayesian MCMC analysis of heterochronous mtDNA are susceptible to an upward bias in the estimation of substitution rates because of model misspecification when the data come from populations with less than simple demographic histories, including sudden short-lived population bottlenecks or pronounced population structure. However, when model misspecification is only mild, then the 95% highest posterior density intervals provide adequate frequentist coverage of the true rates.
Chloroplast microsatellites are becoming increasingly popular markers for population genetic stud... more Chloroplast microsatellites are becoming increasingly popular markers for population genetic studies in plants, but there has been little focus on their potential for demographic inference. In this work the utility of chloroplast microsatellites for the study of population expansions was explored. First, we investigated the power of mismatch distribution analysis and the F(S) test with coalescent simulations of different demographic scenarios. We then applied these methods to empirical data obtained for the Canary Island pine (Pinus canariensis). The results of the simulations showed that chloroplast microsatellites are sensitive to sudden population growth. The power of the F(S) test and accuracy of demographic parameter estimates, such as the time of expansion, were reduced proportionally to the level of homoplasy within the data. The analysis of Canary Island pine chloroplast microsatellite data indicated population expansions for almost all sample localities. Demographic expansions at the island level can be explained by the colonization of the archipelago by the pine, while population expansions of different ages in different localities within an island could be the result of local extinctions and recolonization dynamics. Comparable mitochondrial DNA sequence data from a parasite of P. canariensis, the weevil Brachyderes rugatus, supports this scenario, suggesting a key role for volcanism in the evolution of pine forest communities in the Canary Islands.
Chloroplast microsatellites have been widely used in population genetic studies of conifers in re... more Chloroplast microsatellites have been widely used in population genetic studies of conifers in recent years. However, their haplotype configurations suggest that they could have high levels of homoplasy, thus limiting the power of these molecular markers. A coalescent-based computer simulation was used to explore the influence of homoplasy on measures of genetic diversity based on chloroplast microsatellites. The conditions of the simulation were defined to fit isolated populations originating from the colonization of one single haplotype into an area left available after a glacial retreat. Simulated data were compared with empirical data available from the literature for a species of Pinus that has expanded north after the Last Glacial Maximum. In the evaluation of genetic diversity, homoplasy was found to have little influence on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance estimates (D2sh) were much more affected. The effect of the number of chloroplast microsatellite loci for evaluation of genetic diversity is also discussed.
RESUMEN El pino canario (Pinus canariensis) constituye la especie dominante de uno de los princip... more RESUMEN El pino canario (Pinus canariensis) constituye la especie dominante de uno de los principales ecosistemas forestales de las Islas Canarias. En este archipiélago, los pinares están formados por un mosaico de áreas naturales (supervivientes de la explotación pasada) y plantaciones que se han realizado a partir del año 1940. La viabilidad de de estas formaciones artificiales depende en cierta medida de de la variabilidad de su acervo genético.
Taxanes are defensive metabolites produced by Taxus species (yews) and used in anticancer therapi... more Taxanes are defensive metabolites produced by Taxus species (yews) and used in anticancer therapies. Despite their medical interest, patterns of natural diversity in taxane-related genes are unknown. We examined variation at five main genes of Taxus baccata in the Iberian Peninsula, a region where unique yew genetic resources are endangered. We looked at several gene features and applied complementary neutrality tests, including diversity/divergence tests, tests solely based on site frequency spectrum (SFS) and Zeng’s compound tests. To account for specific demography, microsatellite data were used to infer historical changes in population size based on an Approximate Bayesian Computation (ABC) approach. Polymorphism-divergence tests pointed to positive selection for genes TBT and TAT and balancing selection for DBAT. In addition, neutrality tests based on SFS found that while a recent reduction in population size may explain most statistics’ values, selection may still be in action in genes TBT and DBAT, at least in some populations. Molecular signatures on taxol genes suggest the action of frequent selective waves with different direction or intensity, possibly related to varying adaptive pressures produced by the host–enemy co-evolution on defence-related genes. Such natural selection processes may have produced taxane variants still undiscovered.
Background
Pearl millet landraces display an important variation in their cycle duration. This d... more Background
Pearl millet landraces display an important variation in their cycle duration. This diversity contributes to the stability of crop production in the Sahel despite inter-annual rainfall fluctuation. Conservation of phenological diversity is important for the future of pearl millet improvement and sustainable use. Identification of genes contributing to flowering time variation is therefore relevant. In this study we focused on three flowering candidate genes, PgHd3a, PgDwarf8 and PgPHYC. We tested for signatures of past selective events within polymorphism patterns of these three genes that could have been associated with pearl millet domestication and/or landraces differentiation. In order to implement ad hoc neutrality tests, a plausible demographic history of pearl millet domestication was inferred through Approximate Bayesian Computation by using eight neutral STS loci.
Results
Domesticated pearl millet exhibited 84% of the nucleotide diversity level found in the wild population. No specific polymorphisms were found either in the wild or in the domestic populations. The Bayesian approach and previous studies suggest that gene flow between wild relatives and domesticated pearl millets is a main factor explaining these results. Early and late landraces did not show significant genetic differentiation at both the neutral and the candidate loci. A positive selection was evidenced in PgHd3a and PgDwarf8 genes of domestic forms but not in the wild population.
Conclusion
Our results strongly suggest that PgHd3a and PgDwarf8 were likely targeted by selection during domestication. However, a potential role of any of the three candidate genes in the phenological differentiation between early and late landraces was not supported by our data. Reasons why these results contrast with previous results that have shown a slight but significant association between PgPHYC polymorphisms and variation in flowering time in pearl millet are discussed.
Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their hi... more Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterising the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and E. suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic dataset. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations.
The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging... more The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging field, as traditional analytical tools were largely developed for the purpose of analysing data sampled from a single time point. Markov chain Monte Carlo approaches have been successfully developed for the analysis of heterochronous sequence data from closed panmictic populations. However, attributing genetic differences between temporal samples to mutational events between time points requires the consideration of other factors that may also result in genetic differentiation. Geographical effects are an obvious factor for species exhibiting geographical structuring of genetic variation. The departure from a closed panmictic model require researchers to either exploit software developed for the analysis of isochronous data, take advantage of simulation approaches using algorithms developed for heterochronous data, or explore approximate Bayesian computation. Here, we review statistical approaches employed and available software for the joint analysis of ancient and modern DNA, and where appropriate we suggest how these may be further developed.
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos. K E Y W O R D S : Avian evolution, gene flow, lack of diversification, Macaronesia, oceanic islands.
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Chloroplast microsatellites are becoming increasingly popular markers for population genetic stud... more Chloroplast microsatellites are becoming increasingly popular markers for population genetic studies in plants, but there has been little focus on their potential for demographic inference. In this work the utility of chloroplast microsatellites for the study of population expansions was explored. First, we investigated the power of mismatch distribution analysis and the F(S) test with coalescent simulations of different demographic scenarios. We then applied these methods to empirical data obtained for the Canary Island pine (Pinus canariensis). The results of the simulations showed that chloroplast microsatellites are sensitive to sudden population growth. The power of the F(S) test and accuracy of demographic parameter estimates, such as the time of expansion, were reduced proportionally to the level of homoplasy within the data. The analysis of Canary Island pine chloroplast microsatellite data indicated population expansions for almost all sample localities. Demographic expansi...
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studyi... more Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Background: Determining the presence or absence of gene flow between populations is the target of... more Background: Determining the presence or absence of gene flow between populations is the target of some statistical methods in population genetics. Until recently, these methods either avoided the use of recombining genes, or treated recombination as a nuisance parameter. However, genes with recombination contribute additional information for the detection of gene flow (i.e. through linkage disequilibrium).
Methods: We present three summary statistics based on the spatial arrangement of fixed differences, and shared and exclusive polymorphisms that are sensitive to the presence and direction of gene flow. Power and false positive rate for tests based on these statistics are studied by simulation.
Results: The application of these tests to populations from the Drosophila simulans species complex yielded results consistent with migration between D. simulans and its two endemic sister species D. mauritiana and D. sechellia, and between populations D. mauritiana on the islands of the Mauritius and Rodrigues.
Conclusions: We demonstrate the sensitivity of the developed statistics to the presence and direction of gene flow, and characterize their power as a function of differentiation level and recombination rate. The properties of these statistics make them especially suitable for analyzing high-throughput sequencing data or for their integration within the approximate Bayesian computation framework.
The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging... more The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging field, as traditional analytical tools were largely developed for the purpose of analysing data sampled from a single time point. Markov chain Monte Carlo approaches have been successfully developed for the analysis of heterochronous sequence data from closed panmictic populations. However, attributing genetic differences between temporal samples to mutational events between time points requires the consideration of other factors that may also result in genetic differentiation. Geographical effects are an obvious factor for species exhibiting geographical structuring of genetic variation. The departure from a closed panmictic model require researchers to either exploit software developed for the analysis of isochronous data, take advantage of simulation approaches using algorithms developed for heterochronous data, or explore approximate Bayesian computation. Here, we review statistical approaches employed and available software for the joint analysis of ancient and modern DNA, and where appropriate we suggest how these may be further developed.
In order to empirically assess the effect of actual seed sampling strategy on genetic diversity o... more In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe $\approx$ 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne $\approx$ 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees.
The increasing ability to extract and sequence DNA from noncontemporaneous tissue offers biologis... more The increasing ability to extract and sequence DNA from noncontemporaneous tissue offers biologists the opportunity to analyse ancient DNA (aDNA) together with modern DNA (mDNA) to address the taxonomy of extinct species, evolutionary origins, historical phylogeography and biogeography. Perhaps more exciting are recent developments in coalescence-based Bayesian inference that offer the potential to use temporal information from aDNA and mDNA for the estimation of substitution rates and divergence dates as an alternative to fossil and geological calibration. This comes at a time of growing interest in the possibility of time dependency for molecular rate estimates. In this study, we provide a critical assessment of Bayesian Markov chain Monte Carlo (MCMC) analysis for the estimation of substitution rate using simulated samples of aDNA and mDNA. We conclude that the current models and priors employed in Bayesian MCMC analysis of heterochronous mtDNA are susceptible to an upward bias in the estimation of substitution rates because of model misspecification when the data come from populations with less than simple demographic histories, including sudden short-lived population bottlenecks or pronounced population structure. However, when model misspecification is only mild, then the 95% highest posterior density intervals provide adequate frequentist coverage of the true rates.
Chloroplast microsatellites are becoming increasingly popular markers for population genetic stud... more Chloroplast microsatellites are becoming increasingly popular markers for population genetic studies in plants, but there has been little focus on their potential for demographic inference. In this work the utility of chloroplast microsatellites for the study of population expansions was explored. First, we investigated the power of mismatch distribution analysis and the F(S) test with coalescent simulations of different demographic scenarios. We then applied these methods to empirical data obtained for the Canary Island pine (Pinus canariensis). The results of the simulations showed that chloroplast microsatellites are sensitive to sudden population growth. The power of the F(S) test and accuracy of demographic parameter estimates, such as the time of expansion, were reduced proportionally to the level of homoplasy within the data. The analysis of Canary Island pine chloroplast microsatellite data indicated population expansions for almost all sample localities. Demographic expansions at the island level can be explained by the colonization of the archipelago by the pine, while population expansions of different ages in different localities within an island could be the result of local extinctions and recolonization dynamics. Comparable mitochondrial DNA sequence data from a parasite of P. canariensis, the weevil Brachyderes rugatus, supports this scenario, suggesting a key role for volcanism in the evolution of pine forest communities in the Canary Islands.
Chloroplast microsatellites have been widely used in population genetic studies of conifers in re... more Chloroplast microsatellites have been widely used in population genetic studies of conifers in recent years. However, their haplotype configurations suggest that they could have high levels of homoplasy, thus limiting the power of these molecular markers. A coalescent-based computer simulation was used to explore the influence of homoplasy on measures of genetic diversity based on chloroplast microsatellites. The conditions of the simulation were defined to fit isolated populations originating from the colonization of one single haplotype into an area left available after a glacial retreat. Simulated data were compared with empirical data available from the literature for a species of Pinus that has expanded north after the Last Glacial Maximum. In the evaluation of genetic diversity, homoplasy was found to have little influence on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance estimates (D2sh) were much more affected. The effect of the number of chloroplast microsatellite loci for evaluation of genetic diversity is also discussed.
RESUMEN El pino canario (Pinus canariensis) constituye la especie dominante de uno de los princip... more RESUMEN El pino canario (Pinus canariensis) constituye la especie dominante de uno de los principales ecosistemas forestales de las Islas Canarias. En este archipiélago, los pinares están formados por un mosaico de áreas naturales (supervivientes de la explotación pasada) y plantaciones que se han realizado a partir del año 1940. La viabilidad de de estas formaciones artificiales depende en cierta medida de de la variabilidad de su acervo genético.
Taxanes are defensive metabolites produced by Taxus species (yews) and used in anticancer therapi... more Taxanes are defensive metabolites produced by Taxus species (yews) and used in anticancer therapies. Despite their medical interest, patterns of natural diversity in taxane-related genes are unknown. We examined variation at five main genes of Taxus baccata in the Iberian Peninsula, a region where unique yew genetic resources are endangered. We looked at several gene features and applied complementary neutrality tests, including diversity/divergence tests, tests solely based on site frequency spectrum (SFS) and Zeng’s compound tests. To account for specific demography, microsatellite data were used to infer historical changes in population size based on an Approximate Bayesian Computation (ABC) approach. Polymorphism-divergence tests pointed to positive selection for genes TBT and TAT and balancing selection for DBAT. In addition, neutrality tests based on SFS found that while a recent reduction in population size may explain most statistics’ values, selection may still be in action in genes TBT and DBAT, at least in some populations. Molecular signatures on taxol genes suggest the action of frequent selective waves with different direction or intensity, possibly related to varying adaptive pressures produced by the host–enemy co-evolution on defence-related genes. Such natural selection processes may have produced taxane variants still undiscovered.
Background
Pearl millet landraces display an important variation in their cycle duration. This d... more Background
Pearl millet landraces display an important variation in their cycle duration. This diversity contributes to the stability of crop production in the Sahel despite inter-annual rainfall fluctuation. Conservation of phenological diversity is important for the future of pearl millet improvement and sustainable use. Identification of genes contributing to flowering time variation is therefore relevant. In this study we focused on three flowering candidate genes, PgHd3a, PgDwarf8 and PgPHYC. We tested for signatures of past selective events within polymorphism patterns of these three genes that could have been associated with pearl millet domestication and/or landraces differentiation. In order to implement ad hoc neutrality tests, a plausible demographic history of pearl millet domestication was inferred through Approximate Bayesian Computation by using eight neutral STS loci.
Results
Domesticated pearl millet exhibited 84% of the nucleotide diversity level found in the wild population. No specific polymorphisms were found either in the wild or in the domestic populations. The Bayesian approach and previous studies suggest that gene flow between wild relatives and domesticated pearl millets is a main factor explaining these results. Early and late landraces did not show significant genetic differentiation at both the neutral and the candidate loci. A positive selection was evidenced in PgHd3a and PgDwarf8 genes of domestic forms but not in the wild population.
Conclusion
Our results strongly suggest that PgHd3a and PgDwarf8 were likely targeted by selection during domestication. However, a potential role of any of the three candidate genes in the phenological differentiation between early and late landraces was not supported by our data. Reasons why these results contrast with previous results that have shown a slight but significant association between PgPHYC polymorphisms and variation in flowering time in pearl millet are discussed.
Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their hi... more Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterising the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and E. suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic dataset. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations.
The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging... more The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging field, as traditional analytical tools were largely developed for the purpose of analysing data sampled from a single time point. Markov chain Monte Carlo approaches have been successfully developed for the analysis of heterochronous sequence data from closed panmictic populations. However, attributing genetic differences between temporal samples to mutational events between time points requires the consideration of other factors that may also result in genetic differentiation. Geographical effects are an obvious factor for species exhibiting geographical structuring of genetic variation. The departure from a closed panmictic model require researchers to either exploit software developed for the analysis of isochronous data, take advantage of simulation approaches using algorithms developed for heterochronous data, or explore approximate Bayesian computation. Here, we review statistical approaches employed and available software for the joint analysis of ancient and modern DNA, and where appropriate we suggest how these may be further developed.
Uploads
Papers by Miguel de Navascués
Methods: We present three summary statistics based on the spatial arrangement of fixed differences, and shared and exclusive polymorphisms that are sensitive to the presence and direction of gene flow. Power and false positive rate for tests based on these statistics are studied by simulation.
Results: The application of these tests to populations from the Drosophila simulans species complex yielded results consistent with migration between D. simulans and its two endemic sister species D. mauritiana and D. sechellia, and between populations D. mauritiana on the islands of the Mauritius and Rodrigues.
Conclusions: We demonstrate the sensitivity of the developed statistics to the presence and direction of gene flow, and characterize their power as a function of differentiation level and recombination rate. The properties of these statistics make them especially suitable for analyzing high-throughput sequencing data or for their integration within the approximate Bayesian computation framework.
Pearl millet landraces display an important variation in their cycle duration. This diversity contributes to the stability of crop production in the Sahel despite inter-annual rainfall fluctuation. Conservation of phenological diversity is important for the future of pearl millet improvement and sustainable use. Identification of genes contributing to flowering time variation is therefore relevant. In this study we focused on three flowering candidate genes, PgHd3a, PgDwarf8 and PgPHYC. We tested for signatures of past selective events within polymorphism patterns of these three genes that could have been associated with pearl millet domestication and/or landraces differentiation. In order to implement ad hoc neutrality tests, a plausible demographic history of pearl millet domestication was inferred through Approximate Bayesian Computation by using eight neutral STS loci.
Results
Domesticated pearl millet exhibited 84% of the nucleotide diversity level found in the wild population. No specific polymorphisms were found either in the wild or in the domestic populations. The Bayesian approach and previous studies suggest that gene flow between wild relatives and domesticated pearl millets is a main factor explaining these results. Early and late landraces did not show significant genetic differentiation at both the neutral and the candidate loci. A positive selection was evidenced in PgHd3a and PgDwarf8 genes of domestic forms but not in the wild population.
Conclusion
Our results strongly suggest that PgHd3a and PgDwarf8 were likely targeted by selection during domestication. However, a potential role of any of the three candidate genes in the phenological differentiation between early and late landraces was not supported by our data. Reasons why these results contrast with previous results that have shown a slight but significant association between PgPHYC polymorphisms and variation in flowering time in pearl millet are discussed.
Methods: We present three summary statistics based on the spatial arrangement of fixed differences, and shared and exclusive polymorphisms that are sensitive to the presence and direction of gene flow. Power and false positive rate for tests based on these statistics are studied by simulation.
Results: The application of these tests to populations from the Drosophila simulans species complex yielded results consistent with migration between D. simulans and its two endemic sister species D. mauritiana and D. sechellia, and between populations D. mauritiana on the islands of the Mauritius and Rodrigues.
Conclusions: We demonstrate the sensitivity of the developed statistics to the presence and direction of gene flow, and characterize their power as a function of differentiation level and recombination rate. The properties of these statistics make them especially suitable for analyzing high-throughput sequencing data or for their integration within the approximate Bayesian computation framework.
Pearl millet landraces display an important variation in their cycle duration. This diversity contributes to the stability of crop production in the Sahel despite inter-annual rainfall fluctuation. Conservation of phenological diversity is important for the future of pearl millet improvement and sustainable use. Identification of genes contributing to flowering time variation is therefore relevant. In this study we focused on three flowering candidate genes, PgHd3a, PgDwarf8 and PgPHYC. We tested for signatures of past selective events within polymorphism patterns of these three genes that could have been associated with pearl millet domestication and/or landraces differentiation. In order to implement ad hoc neutrality tests, a plausible demographic history of pearl millet domestication was inferred through Approximate Bayesian Computation by using eight neutral STS loci.
Results
Domesticated pearl millet exhibited 84% of the nucleotide diversity level found in the wild population. No specific polymorphisms were found either in the wild or in the domestic populations. The Bayesian approach and previous studies suggest that gene flow between wild relatives and domesticated pearl millets is a main factor explaining these results. Early and late landraces did not show significant genetic differentiation at both the neutral and the candidate loci. A positive selection was evidenced in PgHd3a and PgDwarf8 genes of domestic forms but not in the wild population.
Conclusion
Our results strongly suggest that PgHd3a and PgDwarf8 were likely targeted by selection during domestication. However, a potential role of any of the three candidate genes in the phenological differentiation between early and late landraces was not supported by our data. Reasons why these results contrast with previous results that have shown a slight but significant association between PgPHYC polymorphisms and variation in flowering time in pearl millet are discussed.