Exponentala
L' exponentala funciono es la un di funcioni la plu importanta en matematiko.
Simpla aceso
[redaktar | redaktar fonto]Kad a es reala nombro e n es integro, lore l'« exponentala de n en bazo a » es egala a « a potenco n » sive :
- expa(n) = a × a × ... × a (n foyo)
On povas extensar ta funciono a ne-intera nombri. On demonstras lore ke la exponentali es la reciproka funcioni di logaritmi loga, e di altra parto ke la trigonometrika funcioni povas expresar su di simpla manero kon di exponentali.
Ta funcioni derivas su e integras su di tre simpla manero, e eventas en multa solvi di altre equacioni. Existas bazo e tala ke ex es la reciproka funcion di naturala logaritmo ln.
Defini e proprieti
[redaktar | redaktar fonto]On notas l'exponentala funciono o ankore (ube es la naturala bazo di logaritmi) e ta funciono povas esar definata da multa equivalanta fasoni, la un esanta kom la sumo de serio e l'altra kom limito :
Hike es la faktorialo di e riprizentas irge reala nombro o komplexa nombro.
En omna vectorala normala kompleta spaco, la precedenta serio es normale konverganto, e on povas do definar l'exponentalo di kelka elemento di algebro di Banach o ankore di kelka elemento di corpo di p-adiala nombri.
Reala exponentala funciono
[redaktar | redaktar fonto]Kad x es realo, lore exp(x) es strikta positiva realo.
Di altra parto la functiono exp di en es klimata e kontinua strikte di plu e , do admisas reciproka funciono, ke es la funciono naturala logaritmo ln, ke es definita sur .
L'exponentala funciono es derivaga e havas per derivita exp, do es nelimite derivaga. Di plu exp es konvexa.