Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

A publishing partnership

Table of contents

Volume 778

Number 2, 2013 December 1

Previous issue Next issue

L23

, , , , , and

Recent discoveries of weak and fast optical transients raise the question of their origin. We investigate the minimum ejecta mass associated with core-collapse supernovae (SNe) of Type Ic. We show that mass transfer from a helium star to a compact companion can produce an ultra-stripped core which undergoes iron core collapse and leads to an extremely fast and faint SN Ic. In this Letter, a detailed example is presented in which the pre-SN stellar mass is barely above the Chandrasekhar limit, resulting in the ejection of only ∼0.05–0.20 M of material and the formation of a low-mass neutron star (NS). We compute synthetic light curves of this case and demonstrate that SN 2005ek could be explained by our model. We estimate that the fraction of such ultra-stripped to all SNe could be as high as 10−3–10−2. Finally, we argue that the second explosion in some double NS systems (for example, the double pulsar PSR J0737−3039B) was likely associated with an ultra-stripped SN Ic.

L24

, , , , , , , , , et al

We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z ∼ 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N ii]λ6584/Hα ratio of 0.27  ±  0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N ii]/Hα ratios depends on the calibration method, and ranges from 12+log(O/H)gas = 8.57 for the Pettini & Pagel calibration to 12+log(O/H)gas = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H)stars = 8.95, similar to the gas-phase abundances of the z ∼ 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z ∼ 2.3 sample: the galaxies with detected Hα tend to be larger and have higher star formation rates than the galaxies without detected Hα, and we may still be missing the most dust-obscured progenitors.

L25

, , , , , , , and

We report the detection in IRC+10216 of lines of HNC J = 3 − 2 pertaining to nine excited vibrational states with energies up to ∼5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise in the vicinity of the star. The HNC data are interpreted through a 1D-spherical non-local radiative transfer model, coupled to a chemical model that includes chemistry at thermochemical equilibrium for the innermost regions and reaction kinetics for the external envelope. Although unresolved by the current early ALMA data, the radius inferred for the emitting region is ∼0farcs06 (i.e., ≃ 3 stellar radii), similar to the size of the dusty clumps reported by IR studies of the innermost region (r < 0farcs3). The derived abundance of HNC relative to H2 is 10−8 < χ(HNC) <10−6, and drops quickly where the gas density decreases and the gas chemistry is dominated by reaction kinetics. Merging HNC data with that of molecular species present throughout the inner envelope, such as vibrationally excited HCN, SiS, CS, or SiO, should allow us to characterize the physical and chemical conditions in the dust formation zone.

L26

and

Based on the difference between the orientation of the interstellar and the solar magnetic fields, there was an expectation by the community that the magnetic field direction will rotate dramatically across the heliopause (HP). Recently, the Voyager team concluded that Voyager 1 (V1) crossed into interstellar space last year. The question is then why there was no significant rotation in the direction of the magnetic field across the HP. Here we present simulations that reveal that strong rotations in the direction of the magnetic field at the HP at the location of V1 (and Voyager 2) are not expected. The solar magnetic field strongly affects the drapping of the interstellar magnetic field (BISM) around the HP. BISM twists as it approaches the HP and acquires a strong T component (East–West). The strong increase in the T component occurs where the interstellar flow stagnates in front of the HP. At this same location the N component BN is significantly reduced. Above and below, the neighboring BISM lines also twist into the T direction. This behavior occurs for a wide range of orientations of BISM. The angle δ = asin (BN/B) is small (around 10°–20°), as seen in the observations. Only after some significant distance outside the HP is the direction of the interstellar field distinguishably different from that of the Parker spiral.

L27

, , , , , , , , , et al

In an extended photometric campaign of RR Lyrae variables of the globular cluster M3, an aberrant-light-curve, non-Blazhko RRab star, V123, was detected. Based on its brightness, colors and radial-velocity curve, V123 is a bona fide member of M3. The light curve of V123 exhibits neither a bump preceding the light minimum, nor a hump on the rising branch, and has a longer than normal rise time, with a convex shape. A similar shape characterizes the mean light curves of some large-modulation-amplitude Blazhko stars, but none of the regular RRab variables with similar pulsation periods. This peculiar object thus mimics Blazhko variables without showing any evidence of periodic amplitude and/or phase modulation. We cannot find any fully convincing answer to the peculiar behavior of V123, however, the phenomenon raises again the possibility that rotation and aspect angle might play a role in the explanation of the Blazhko phenomenon, and that some source of inhomogeneity (magnetic field, chemical inhomogeneity) deforms the radial pulsation of Blazhko stars during the modulation.

L28

, , and

We present the first observational evidence of multiple slow acoustic oscillations in the post-flaring loops of the corona of Proxima Centauri using XMM-Newton observations. We find the signature of periodic oscillations localized in the decay phase of the flare in its soft (0.3–10.0 keV) X-ray emissions. Using the standard wavelet tool, we find multiple periodicities of 1261 s and 687 s. These bursty oscillations persist for durations of 90 minutes and 50 minutes, respectively, for more than three cycles. The intensity oscillations with a period of 1261 s may be the signature of the fundamental mode of slow magnetoacoustic waves with a phase speed of 119 km s−1 in a loop of length 7.5 × 109 cm, which is initially heated, producing the flare peak temperature of 33 MK and later cooled down in the decay phase and maintained at an average temperature of 7.2 MK. The other period of 687 s may be associated with the first overtone of slow magnetoacoustic oscillations in the flaring loop. The fundamental mode oscillations show dissipation with a damping time of 47 minutes. The period ratio P1/P2 is found to be 1.83, indicating that such oscillations are most likely excited in longitudinal density stratified stellar loops. We estimate the density scale height of the stellar loop system as ∼23 Mm, which is smaller than the hydrostatic scale height of the hot loop system, and implies the existence of non-equilibrium conditions.

L29

and

We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20–22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30 km s−1 after their appearance, and subsequently their intensities at 131 Å decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130 km s−1 and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4π. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.

L30

, , , and

Protonated polycyclic hydrocarbons have been added to the list of suggested carriers of diffuse interstellar absorptions. To test this proposition requires laboratory spectra measured under interstellar conditions, in particular with the rotational and vibrational degrees of freedom equilibrated to low temperatures. This has been achieved for protonated pyrene with absorption bands in the visible, using an ion trap and collisional cooling to ≈15 K. A two-photon excitation–dissociation scheme was employed to record the (1) 1A' ← X1A' electronic spectrum on around 105 ions per duty cycle. The origin band of the absorption spectrum of this relatively large polycyclic aromatic species with 27 atoms is located at 4858.86 Å. Two further comparably intense spectral features are present at 4834.48 and 4809.32 Å. This is one of the largest protonated aromatics studied in the gas phase and compared to astronomical observations; however, it is not a carrier of known diffuse interstellar bands.

L31

, , , , , , , , , et al

We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few-arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (vproj ∼ 500 km s−1) pulsar candidate with a cometary pulsar wind nebula (PWN) located ∼2' north–east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Γ ∼ 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3–30 keV) = 1.3 × 1034 erg s−1. The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

L32

, , , , and

The accretion of hydrogen-rich material on to carbon–oxygen white dwarfs (CO WDs) is crucial for understanding Type Ia supernova (SN Ia) from the single-degenerate model, but this process has not been well understood due to the numerical difficulties in treating H and He flashes during the accretion. For CO WD masses from 0.5 to 1.378 M and accretion rates in the range from 10−8 to 10−5M yr−1, we simulated the accretion of solar-composition material on to CO WDs using the state-of-the-art stellar evolution code of MESA. For comparison with steady-state models, we first ignored the contribution from nuclear burning to the luminosity when determining the Eddington accretion rate, and found that the properties of H burning in our accreting CO WD models are similar to those from the steady-state models, except that the critical accretion rates at which the WDs turn into red giants or H-shell flashes occur on their surfaces are slightly higher than those from the steady-state models. However, the super-Eddington wind is triggered at much lower accretion rates than previously thought, when the contribution of nuclear burning to the total luminosity is included. This super-Eddington wind naturally prevents the CO WDs with high accretion rates from becoming red giants, thus presenting an alternative to the optically thick wind proposed by Hachisu et al. Furthermore, the super-Eddington wind works in low-metallicity environments, which may explain SNe Ia observed at high redshifts.

L33

and

Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm−3, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.

L34

The formation of the largest objects in the Kuiper belt, with measured densities of ∼1.5 g cm−3 and higher, from the coagulation of small bodies, with measured densities below 1 g cm−3, is difficult to explain without invoking significant porosity in the smallest objects. If such porosity does occur, measured densities should begin to increase at the size at which significant porosity is no longer supported. Among the asteroids, this transition occurs for diameters larger than ∼350 km. In the Kuiper belt, no density measurements have been made between ∼350 km and ∼850 km, the diameter range where porosities might first begin to drop. Objects in this range could provide key tests of the rock fraction of small Kuiper belt objects (KBOs). Here we report the orbital characterization, mass, and density determination of the 2002 UX25 system in the Kuiper belt. For this object, with a diameter of ∼650 km, we find a density of 0.82 ± 0.11 g cm−3, making it the largest solid known object in the solar system with a measured density below that of pure water ice. We argue that the porosity of this object is unlikely to be above ∼20%, suggesting a low rock fraction. If the currently measured densities of KBOs are a fair representation of the sample as a whole, creating ∼1000 km and larger KBOs with rock mass fractions of 70% and higher from coagulation of small objects with rock fractions as low as those inferred from 2002 UX25 is difficult.

L35

and

Justham and Di Stefano et al. proposed that the white dwarf progenitor of a Type Ia supernova (SN Ia) may have to spin down before it can explode. As the white dwarf spin-down timescale is not well known theoretically, here we try to constrain it empirically (within the framework of this spin-down model) for progenitor systems that contain a giant donor and for which circumbinary material has been detected after the explosion: we obtain an upper limit of a few 107yr. Based on the study of Di Stefano & Kilic, this means that it is too early to rule out the existence of a surviving companion in SNR 0509−67.5.

L36

, , , , , and

Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of this rapid process has been a challenge. In this Letter, using a nonlinear force-free field (NLFFF) extrapolation technique, we present a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by analysis of the field lines traced from positions of four conspicuous flare 1700 Å footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of the magnetic twist index. In particular, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ∼1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the flare, the twist index of regions around the footpoints diminishes greatly and the above field lines become low-lying and less twisted (≲0.6 turns), overarched by loops linking the two flare ribbons formed later. About 10% of the flux (∼3 × 1019 Mx) from the inner footpoints undergoes a footpoint exchange. This portion of flux originates from the edge regions of the inner footpoints that are brightened first. These rapid changes of magnetic field connectivity inferred from the NLFFF extrapolation are consistent with the tether-cutting magnetic reconnection model.

L37

, , , , and

Type Ia supernovae (SNe Ia), thermonuclear explosions of carbon–oxygen white dwarfs (CO-WDs), are currently the best cosmological "standard candles," but the triggering mechanism of the explosion is unknown. It was recently shown that the rate of head-on collisions of typical field CO-WDs in triple systems may be comparable to the SNe Ia rate. Here we provide evidence supporting a scenario in which the majority of SNe Ia are the result of such head-on collisions of CO-WDs. In this case, the nuclear detonation is due to a well understood shock ignition, devoid of commonly introduced free parameters such as the deflagration velocity or transition to detonation criteria. By using two-dimensional hydrodynamical simulations with a fully resolved ignition process, we show that zero-impact-parameter collisions of typical CO-WDs with masses 0.5–1 M result in explosions that synthesize 56Ni masses in the range of ∼0.1–1 M, spanning the wide distribution of yields observed for the majority of SNe Ia. All collision models yield the same late-time (≳ 60 days since explosion) bolometric light curve when normalized by 56Ni masses (to better than 30%), in agreement with observations. The calculated widths of the 56Ni-mass-weighted line-of-sight velocity distributions are correlated with the calculated 56Ni yield, agreeing with the observed correlation. The strong correlation, shown here for the first time, between 56Ni yield and total mass of the colliding CO-WDs (insensitive to their mass ratio), is suggestive as the source for the continuous distribution of observed SN Ia features, possibly including the Philips relation.

L38

, , and

We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004–2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solar surface, our results are in good agreement with flow measurements from local helioseismology.

L39

, , , and

In order to study the feedback from active galactic nuclei (AGNs), we performed a survey of SiO J = 2–1 (v = 0) transition toward ten gas-rich active galaxies with the IRAM 30 m telescope. As the first survey of SiO in such galaxies, we detected SiO J = 2–1 (v = 0) emission in six galaxies above the 3σ level and one galaxy (NGC 3690) at the 2.7σ level. The detection rate is not related to the AGN type or to star formation activity. In comparison with M82, which is a pure star-forming galaxy without nuclear activity, our SiO detections could not be completely ascribed to being due to star formation activity. This suggests that the AGN feedback may be efficient in producing SiO molecules in such galaxies. Further surveys with large single-dish millimeter telescopes and interferometers are necessary for understanding the origin of SiO in galaxies with nuclear activity.

L40

and

Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

L41

, , , , , , , , , and

We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H ii regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with AV values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H ii regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground "dust screen" assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100–200 pc) scales, the extinction becomes consistent with a "dust screen," suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

L42

, , and

Recent observations have shown the presence of extra-solar planets in Galactic open stellar clusters, such as in Praesepe (M44). These systems provide a favorable environment for planetary formation due to the high heavy-element content exhibited by the majority of their population. The large stellar density, and corresponding high close-encounter event rate, may induce strong perturbations of planetary orbits with large semimajor axes. Here we present a set of N-body simulations implementing a novel scheme to treat the tidal effects of external stellar perturbers on planetary orbit eccentricity and inclination. By simulating five nearby open clusters, we determine the rate of occurrence of bodies extracted from their parent stellar system by quasi-impulsive tidal interactions. We find that the specific free-floating planet production rate $\dot{N}_o$ (total number of free-floating planets per unit of time, normalized by the total number of stars), is proportional to the stellar density ρ of the cluster: $\dot{N}_o = \alpha \rho _\star$, with α = (23 ± 5) × 10−6 pc3 Myr−1. For the Pleiades (M45), we predict that ∼26% of stars should have lost their planets. This raises the exciting possibility of directly observing these wandering planets with the James Webb Space Telescope in the near-infrared band. Assuming a surface temperature for the planet of ∼500 K, a free-floating planet of Jupiter size inside the Pleiades would have a specific flux of Fν (4.4 μm) ≈4 × 102 nJy, which would lead to a very clear detection (S/N ∼ 100) in only one hour of integration.