In the last decades the popularity of natural language interfaces to databases (NLIDBs) has incre... more In the last decades the popularity of natural language interfaces to databases (NLIDBs) has increased, because in many cases information obtained from them is used for making important business decisions. Unfortunately, the complexity of their customization by database administrators make them difficult to use. In order for a NLIDB to obtain a high percentage of correctly translated queries, it is necessary that it is correctly customized for the database to be queried. In most cases the performance reported in NLIDB literature is the highest possible; i.e., the performance obtained when the interfaces were customized by the implementers. However, for end users it is more important the performance that the interface can yield when the NLIDB is customized by someone different from the implementers. Unfortunately, there exist very few articles that report NLIDB performance when the NLIDBs are not customized by the implementers. This article presents a semantically-enriched data dictionary (which permits solving many of the problems that occur when translating from natural language to SQL) and an experiment in which two groups of undergraduate students customized our NLIDB and English language frontend (ELF), considered one of the best available commercial NLIDBs. The experimental results show that, when customized by the first group, our NLIDB obtained a 44.69 % of correctly answered queries and ELF 11.83 % for the ATIS database, and when customized by the second group, our NLIDB attained 77.05 % and ELF 13.48 %. The performance attained by our NLIDB, when customized by ourselves was 90 %.
In most business activities, decision-making has a very important role, since it may benefit or h... more In most business activities, decision-making has a very important role, since it may benefit or harm the business. Nowadays decision-making is based on information obtained from databases, which are only accessible directly by computer experts; however, the end-user that requires information from a database is not always a computer expert, so the need arises to allow inexperienced users to obtain information directly from a database. To this end, several tools are commercially available such as visual query building and natural language interfaces to databases (NLIDBs). However, the first kind of tools requires at least a basic level of knowledge of some formal query language, while NLIDBs, despite the fact that users do not require training for using the interface, have not obtained the desired performance due to problems inherent to natural language processing. In this paper an intuitive interface is presented, which allows inexperienced users to easily compose queries in SQL, without the need of training on its operation nor having knowledge of SQL.
In the last decades the popularity of natural language interfaces to databases (NLIDBs) has incre... more In the last decades the popularity of natural language interfaces to databases (NLIDBs) has increased, because in many cases information obtained from them is used for making important business decisions. Unfortunately, the complexity of their customization by database administrators make them difficult to use. In order for a NLIDB to obtain a high percentage of correctly translated queries, it is necessary that it is correctly customized for the database to be queried. In most cases the performance reported in NLIDB literature is the highest possible; i.e., the performance obtained when the interfaces were customized by the implementers. However, for end users it is more important the performance that the interface can yield when the NLIDB is customized by someone different from the implementers. Unfortunately, there exist very few articles that report NLIDB performance when the NLIDBs are not customized by the implementers. This article presents a semantically-enriched data dictionary (which permits solving many of the problems that occur when translating from natural language to SQL) and an experiment in which two groups of undergraduate students customized our NLIDB and English language frontend (ELF), considered one of the best available commercial NLIDBs. The experimental results show that, when customized by the first group, our NLIDB obtained a 44.69 % of correctly answered queries and ELF 11.83 % for the ATIS database, and when customized by the second group, our NLIDB attained 77.05 % and ELF 13.48 %. The performance attained by our NLIDB, when customized by ourselves was 90 %.
In most business activities, decision-making has a very important role, since it may benefit or h... more In most business activities, decision-making has a very important role, since it may benefit or harm the business. Nowadays decision-making is based on information obtained from databases, which are only accessible directly by computer experts; however, the end-user that requires information from a database is not always a computer expert, so the need arises to allow inexperienced users to obtain information directly from a database. To this end, several tools are commercially available such as visual query building and natural language interfaces to databases (NLIDBs). However, the first kind of tools requires at least a basic level of knowledge of some formal query language, while NLIDBs, despite the fact that users do not require training for using the interface, have not obtained the desired performance due to problems inherent to natural language processing. In this paper an intuitive interface is presented, which allows inexperienced users to easily compose queries in SQL, without the need of training on its operation nor having knowledge of SQL.
Uploads
Papers by Marco Aguirre