Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Si-yang Li

    Si-yang Li

    Bedaquiline (BDQ, B) is the first-in-class diarylquinoline to be approved for treatment of tuberculosis (TB). Recent guidelines recommend its use in treatment of multidrug- and extensively drug-resistant (MDR/XDR-TB). The newly approved... more
    Bedaquiline (BDQ, B) is the first-in-class diarylquinoline to be approved for treatment of tuberculosis (TB). Recent guidelines recommend its use in treatment of multidrug- and extensively drug-resistant (MDR/XDR-TB). The newly approved regimen combining BDQ with pretomanid and linezolid is the first 6-month oral regimen proven to be effective against MDR/XDR-TB. However, the emergence of BDQ resistance, primarily due to inactivating mutations in the Rv0678 gene encoding a repressor of the MmpS5-MmpL5 transporter, threatens to undermine the efficacy of new BDQ-containing regimens. Since the shift in MIC due to these mutations is relatively small (2-to-8x), safer and more potent diarylquinoline analogues may be more effective than BDQ. TBAJ-876, which is in phase 1 trials, has more potent in vitro activity and a superior pre-clinical safety profile than BDQ. Using a murine model of TB, we evaluated the dose-dependent activity of TBAJ-876 compared to BDQ against the wild-type H37Rv st...
    In the recently concluded REMox-TB trial, two 4-month moxifloxacin-containing regimens did not meet the criteria for noninferiority compared to the current 6-month first-line regimen to treat tuberculosis (TB). Despite the disappointing... more
    In the recently concluded REMox-TB trial, two 4-month moxifloxacin-containing regimens did not meet the criteria for noninferiority compared to the current 6-month first-line regimen to treat tuberculosis (TB). Despite the disappointing result, this phase 3 clinical trial provides a rare opportunity to gauge the predictive accuracy of the nonclinical models used to support regimen development. In parallel with the REMox-TB trial, we compared the efficacy of the same three regimens against chronic TB infection in the commonly used BALB/c mouse strain and in C3HeB/FeJ mice, which have attracted recent interest as a nonclinical efficacy model because they develop caseous lung lesions which may better resemble human TB. In long-term treatment experiments at two institutions, using low-dose aerosol infection models with 6- to 8-week incubation periods in both mouse strains, control mice received rifampin, isoniazid, pyrazinamide, and ethambutol (RHZE), and test mice received the same regimen with moxifloxacin replacing isoniazid (RMZE) or ethambutol (RHZM). Outcome measures were lung CFU counts during treatment and relapse after various durations of treatment. At both institutions and in both mouse strains, RMZE and RHZM reduced by approximately 1 month and 0 to 1 month, respectively, the treatment duration needed to produce the same relapse rate as RHZE. These results demonstrating generally similar treatment-shortening effects of the moxifloxacin-containing regimens in each mouse strain, with effect sizes consistent with the REMox-TB trial results, reinforce the predictive value of murine models for TB regimen development.
    The mechanism of action of pyrazinamide, a key sterilizing drug in the treatment of tuberculosis, remains elusive; pyrazinamide is a pro-drug that requires activation by a bacterial-encoded enzyme, and its activity is most apparent on... more
    The mechanism of action of pyrazinamide, a key sterilizing drug in the treatment of tuberculosis, remains elusive; pyrazinamide is a pro-drug that requires activation by a bacterial-encoded enzyme, and its activity is most apparent on non-replicating Mycobacterium tuberculosis. Recently, it has been suggested that pyrazinamide might exert also some host-directed effect in addition to its antimicrobial activity. To address this possibility, three sequential experiments were conducted in immune-competent BALB/c and in immune-deficient, athymic nude mice. In the first experiment, BALB/c mice infected with M. bovis, which is naturally resistant to pyrazinamide because it is unable to activate the drug, were treated with standard drug regimens with and without pyrazinamide to specifically detect a host-directed effect. As no effect was observed, pyrazinamide activity was compared in M. tuberculosis-infected BALB/c and nude mice to determine whether the effect of pyrazinamide would be red...
    A key drug for the treatment of leprosy, clofazimine has recently been associated with highly effective and significantly shortened regimens for the treatment of multidrug-resistant tuberculosis (TB). Consequently, we hypothesized that... more
    A key drug for the treatment of leprosy, clofazimine has recently been associated with highly effective and significantly shortened regimens for the treatment of multidrug-resistant tuberculosis (TB). Consequently, we hypothesized that clofazimine may also shorten the duration of treatment for drug-susceptible TB. We conducted a controlled trial in the mouse model of TB chemotherapy comparing the activity of the 6-mo standard regimen for TB treatment, i.e., 2 mo of daily rifampin, isoniazid, pyrazinamide, and ethambutol followed by 4 mo of rifampin and isoniazid, with a 4-mo clofazimine-containing regimen: 2 mo of daily rifampin, isoniazid, pyrazinamide, and clofazimine followed by 2 mo of rifampin, isoniazid, and clofazimine. Treatment efficacy was assessed on the basis of Mycobacterium tuberculosis colony counts in the lungs and spleens during treatment and on the proportion of mice with culture-positive relapse 6 mo after treatment cessation. No additive effect of clofazimine was observed after the first week of treatment, but, by the second week of treatment, the colony counts were significantly lower in the clofazimine-treated mice than in the mice receiving the standard regimen. Lung culture conversion was obtained after 3 and 5 mo in mice treated with the clofazimine-containing and standard regimens, respectively, and relapse-free cure was obtained after 3 and 6 mo of treatment with the clofazimine-containing and standard regimens, respectively. Thus, clofazimine is a promising anti-TB drug with the potential to shorten the duration of TB chemotherapy by at least half (3 mo vs. 6 mo) in the mouse model of TB.