Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Open Access

Test of lepton flavor universality using B0D*τ+ντ decays with hadronic τ channels

R. Aaij et al. (LHCb Collaboration)
Phys. Rev. D 108, 012018 – Published 27 July 2023; Erratum Phys. Rev. D 109, 119902 (2024)
  1. J. P. Lees et al. (BABAR Collaboration), Evidence for an Excess of B¯D(*)τν¯τ Decays, Phys. Rev. Lett. 109, 101802 (2012).
  2. M. Huschle et al. (Belle Collaboration), Measurement of the branching ratio of B¯D(*)τν¯τ relative to B¯D(*)ν¯ decays with hadronic tagging at Belle, Phys. Rev. D 92, 072014 (2015).
  3. S. Hirose et al. (Belle Collaboration), Measurement of the τ lepton polarization and R(D*) in the decay B¯D*τν¯τ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97, 012004 (2018).
  4. R. Aaij et al. (LHCb Collaboration), Measurement of the Ratio of the B(B0D*τ+ντ) and B(B0D*μ+νμ) Branching Fractions Using Three-Prong τ-Lepton Decays, Phys. Rev. Lett. 120, 171802 (2018).
  5. R. Aaij et al. (LHCb Collaboration), Test of lepton flavor universality by the measurement of the B0D*τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97, 072013 (2018).
  6. R. Aaij et al. (LHCb Collaboration), Measurement of the Ratio of Branching Fractions R(D*) and R(D0) , Measurement of the ratio of branching fractions R(D*) and R(D0) arXiv:2302.02886.
  7. Y. Amhis et al. (HFLAV Collaboration), Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023).
  8. S. Fajfer, J. F. Kamenik, and I. Nisandzic, On the BD*τν¯τ sensitivity to new physics, Phys. Rev. D 85, 094025 (2012).
  9. S. Fajfer and N. Košnik, Vector leptoquark resolution of RK and RD(*) puzzles, Phys. Lett. B 755, 270 (2016).
  10. A. Crivellin, D. Müller, and T. Ota, Simultaneous explanation of R(D(*)) and bsμ+μ: The last scalar leptoquarks standing, J. High Energy Phys. 2017, 040.
  11. R. L. Workman et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  12. A. A. Alves, Jr. et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).
  13. LHCb Collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30, 1530022 (2015).
  14. R. Aaij et al., Performance of the LHCb vertex locator, J. Instrum. 9, P09007 (2014).
  15. R. Arink et al., Performance of the LHCb outer tracker, J. Instrum. 9, P01002 (2014).
  16. P. d’Argent et al., Improved performance of the LHCb outer tracker in LHC Run 2, J. Instrum. 12, P11016 (2017).
  17. M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73, 2431 (2013).
  18. A. A. Alves, Jr. et al., Performance of the LHCb muon system, J. Instrum. 8, P02022 (2013).
  19. R. Aaij et al., The LHCb trigger and its performance in 2011, J. Instrum. 8, P04022 (2013).
  20. V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, J. Instrum. 8, P02013 (2013).
  21. T. Likhomanenko, P. Ilten, E. Khairullin, A. Rogozhnikov, A. Ustyuzhanin, and M. Williams, LHCb topological trigger reoptimization, J. Phys. Conf. Ser. 664, 082025 (2015).
  22. T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to pythia 8.1, Comput. Phys. Commun. 178, 852 (2008); pythia 6.4 physics and manual, J. High Energy Phys. 2006, 026.
  23. I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331, 032047 (2011).
  24. D. J. Lange, The evtgen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
  25. N. Davidson, T. Przedzinski, and Z. Was, photos interface in c++: Technical and physics documentation, Comput. Phys. Commun. 199, 86 (2016).
  26. I. M. Nugent, T. Przedziński, P. Roig, O. Shekhovtsova, and Z. Wąs, Resonance chiral Lagrangian currents and experimental data for τπππ+ντ , Phys. Rev. D 88, 093012 (2013).
  27. N. Davidson, G. Nanava, T. Przedziński, E. Richter-Wąs, and Z. Wąs, Universal interface of tauola: Technical and physics documentation, Comput. Phys. Commun. 183, 821 (2012).
  28. I. M. Nugent, Invariant mass spectra of τhhh+ντ decays, Nucl. Phys. B, Proc. Suppl. 253–255, 38 (2014).
  29. J. Allison et al. (Geant4 Collaboration), geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006); S. Agostinelli et al. (Geant4 Collaboration), geant4: A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
  30. M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331, 032023 (2011).
  31. D. Müller, M. Clemencic, G. Corti, and M. Gersabeck, redecay: A novel approach to speed up the simulation at LHCb, Eur. Phys. J. C 78, 1009 (2018).
  32. R. Aaij et al. (LHCb Collaboration), A precise measurement of the B0 meson oscillation frequency, Eur. Phys. J. C 76, 412 (2016).
  33. F. U. Bernlochner, M. F. Sevilla, D. J. Robinson, and G. Wormser, Semitauonic b-hadron decays: A lepton flavor universality laboratory, Rev. Mod. Phys. 94, 015003 (2022).
  34. T. Skwarnicki, A Study of the Radiative CASCADE Transitions between the Upsilon-Prime and Upsilon Resonances, Institute of Nuclear Physics, 1986.
  35. I. Caprini, L. Lellouch, and M. Neubert, Dispersive bounds on the shape of B¯D(*)ν¯ form factors, Nucl. Phys. B530, 153 (1998).
  36. C. G. Boyd, B. Grinstein, and R. F. Lebed, Model-independent determinations of B¯Dν¯,D*ν¯ form factors, Nucl. Phys. B461, 493 (1996).

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×