Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exponential Stabilization for Markov Jump Neural Networks with Additive Time-Varying Delays via Event-Triggered Impulsive Control

  • Conference paper
  • First Online:
Recent Developments in Mathematical, Statistical and Computational Sciences (AMMCS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 343))

  • 1031 Accesses

Abstract

This paper investigates the Exponential Stabilization (ES) problem for Markov Jumping Neural Networks (MJNNs) with Additive Time-varying Delays (ATDs). To further mitigate the “unnecessary” waste of networks resources, a Sample-based Event-triggered Impulsive Control (SEIC) scheme is employed. A novel Lyapunov-Krasovskii functional is constructed by considering more information about sampled data, ATDs and Markov jump parameters. In virtue of the SEIC scheme, a new ES criterion for MJNNs with ATDs is then presented. In the end, a numerical example is given to illustrate the validity of the obtained result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galicki, M., Witte, H., Dörschel, J., Eiselt, M., Griessbach, G.: Common optimization of adaptive preprocessing units and a neural network during the learning period. Application in EEG pattern recognition. Neural Netw. 10(6), 1153–1163 (1997)

    Google Scholar 

  2. Ramasamy, S., Nagamani, G., Zhu, Q.: Robust dissipativity and passivity analysis for discrete-time stochastic t-s fuzzy cohen-grossberg markovian jump neural networks with mixed time delays. Nonlinear Dyn. 85(4), 2777–2799 (2016)

    Article  Google Scholar 

  3. Zhang, Y., Shi, P., Agarwal, R.K., Shi, Y.: Dissipativity analysis for discrete time-delay fuzzy neural networks with markovian jumps. IEEE Trans. Fuzzy Syst. 24(2), 432–443 (2016)

    Article  Google Scholar 

  4. Rawat, A., Yadav, R., Shrivastava, S.: Neural network applications in smart antenna arrays: a review. AEU-Int. J. Electron. Commun. 66(11), 903–912 (2012)

    Article  Google Scholar 

  5. Zhang, Y., Shi, Y., Shi, P.: Robust and non-fragile finite-time h-infinity control for uncertain markovian jump nonlinear systems. Appl. Math. Comput. 279, 125–138 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Zhang, Y., Shi, Y., Shi, P.: Resilient and robust finite-time h-infinity control for uncertain discrete-time jump nonlinear systems. Appl. Math. Model. 49, 612–629 (2017)

    Article  MathSciNet  Google Scholar 

  7. Zhao, Z., Song, Q., He, S.: Passivity analysis of stochastic neural networks with time-varying delays and leakage delay. Neurocomputing 125, 22–27 (2014)

    Article  Google Scholar 

  8. Zhao, Y., Gao, H., Mou, S.: Asymptotic stability analysis of neural networks with successive time delay components. Neurocomputing 71(13), 2848–2856 (2008)

    Article  Google Scholar 

  9. Cao, J.: Global stability analysis in delayed cellular neural networks. Phys. Rev. E 45(10), 1707–1720 (1999)

    Google Scholar 

  10. Tao, L., Qi, L., Sun, C., Zhang, B.: Exponential stability of recurrent neural networks with time-varying discrete and distributed delays. Nonlinear Anal. Real World Appl. 10(4), 2581–2589 (2009)

    Article  MathSciNet  Google Scholar 

  11. Wang, Z., Liu, Y., Yu, L., Liu, X.: Exponential stability of delayed recurrent neural networks with markovian jumping parameters. Phys. Lett. A 356(4–5), 346–352 (2006)

    Article  Google Scholar 

  12. Wu, Z.-G., Shi, P., Su, H., Chu, J.: Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Article  Google Scholar 

  13. Zhu, Q., Cao, J.: Robust exponential stability of markovian jump impulsive stochastic cohen-grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 21(8), 1314–1325 (2010)

    Article  Google Scholar 

  14. Bao, H., Cao, J.: Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and markovian jumping parameters. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3786–3791 (2011)

    Article  MathSciNet  Google Scholar 

  15. Yan, G., Zhou, W., Ji, C., Tong, D., Fang, J.: Globally exponential stability of stochastic neutral-type delayed neural networks with impulsive perturbations and markovian switching. Nonlinear Dyn. 70(3), 2107–2116 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, M., Deng, F.: Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with lvy noise. Nonlinear Anal. Hybrid Syst. 24, 171–185 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Sun, H., Zong, G., Hou, L.: Composite anti-disturbance resilient control for markovian jump nonlinear systems with partly unknown transition probabilities and multiple disturbances. Int. J. Robust Nonlinear Control 27(14) (2016)

    Google Scholar 

  18. Li, M., Deng, F.: Necessary and sufficient conditions for consensus of continuous-time multiagent systems with markovian switching topologies and communication noises. IEEE Trans. Cybern. 2, 1–7 (2019)

    Google Scholar 

  19. Peng, C., Li, F.: A survey on recent advances in event-triggered communication and control. Inf. Sci. 457, 113–125 (2018)

    Article  MathSciNet  Google Scholar 

  20. Åström, K.J., Bernhardsson, B.: Comparison of periodic and event based sampling for first-order stochastic systems. IFAC Proc. Vol. 32(2), 5006–5011 (1999)

    Article  Google Scholar 

  21. Tan, X., Cao, J., Li, X.: Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy. IEEE Trans. Cybern. 99, 1–10 (2018)

    Google Scholar 

  22. Zhu, W., Wang, D., Liu, L., Feng, G.: Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3599–3609 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, S., Deng, F., Xing, M.: Aperiodic sampled-data robust h-infinity control for delayed stochastic fuzzy systems with quasi-periodical multi-rate approach. J. Franklin Inst. Eng. Appl. Math. 356(8), 4530–4553 (2019)

    Article  Google Scholar 

  24. Li, S., Deng, F., Zhao, X.: A new perspective on fuzzy control of the stochastic t-s fuzzy systems with sampled-data. Sci. China Inf. Sci. 62(10) (2019)

    Google Scholar 

  25. Zong, G., Ren, H.: Guaranteed cost finite-time control for semi-markov jump systems with event-triggered scheme and quantization input. Int. J. Robust Nonlinear Control 29(15), 5251–5273 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhu, Q., Cao, J.: Stability analysis of markovian jump stochastic bam neural networks with impulse control and mixed time delays. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 467–479 (2012)

    Article  MathSciNet  Google Scholar 

  27. Park, P., Lee, W., Lee, S.: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Franklin Inst. 352, 1378–1396 (2015)

    Article  MathSciNet  Google Scholar 

  28. Park, P., Ko, J., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 23–238 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant nos.11671206, 11601474 and 61472093, the China Scholarship Council (CSC), and NSERC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Qiu, Z., Liu, X., Xiong, L. (2021). Exponential Stabilization for Markov Jump Neural Networks with Additive Time-Varying Delays via Event-Triggered Impulsive Control. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Developments in Mathematical, Statistical and Computational Sciences. AMMCS 2019. Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-63591-6_23

Download citation

Publish with us

Policies and ethics