Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semi-Regular Sequences and Other Random Systems of Equations

  • Chapter
  • First Online:
Women in Numbers Europe III

Abstract

The security of multivariate cryptosystems and digital signature schemes relies on the hardness of solving a system of polynomial equations over a finite field. Polynomial system solving is also currently a bottleneck of index-calculus algorithms to solve the elliptic and hyperelliptic curve discrete logarithm problem. The complexity of solving a system of polynomial equations is closely related to the cost of computing Gröbner bases, since computing the solutions of a polynomial system can be reduced to finding a lexicographic Gröbner basis for the ideal generated by the equations. Several algorithms for computing such bases exist: We consider those based on repeated Gaussian elimination of Macaulay matrices. In this paper, we analyze the case of random systems, where random systems means either semi-regular systems, or quadratic systems in n variables which contain a regular sequence of n polynomials. We provide explicit formulae for bounds on the solving degree of semi-regular systems with m > n equations in n variables, for equations of arbitrary degrees for m = n + 1, and for any m for systems of quadratic or cubic polynomials. In the appendix, we provide a table of bounds for the solving degree of semi-regular systems of m = n + k quadratic equations in n variables for 2 ≤ k, n ≤ 100 and online we provide the values of the bounds for 2 ≤ k, n ≤ 500. For quadratic systems which contain a regular sequence of n polynomials, we argue that the Eisenbud-Green-Harris conjecture, if true, provides a sharp bound for their solving degree, which we compute explicitly.

This work was started during the collaborative conference “Women in Numbers Europe 3”. The authors would like to acknowledge the organizers Sorina Ionica, Holly Krieger, and Elisa Lorenzo Garcia as well as the Henri Lebesgue Center, which hosted the conference. The symbolic algebra computations were performed with CoCoA 5 [1], Macaulay2 [18], Magma [10], and Wolfram Mathematica [31].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, J., Bigatti, A.M., Robbiano, L.: CoCoA: a system for doing Computations in Commutative Algebra. Available via http://cocoa.dima.unige.it.

  2. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Université Pierre et Marie Curie - Paris VI, (2004)

    Google Scholar 

  3. Bardet, M., Faugère, J-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, (2004)

    Google Scholar 

  4. Bardet, M., Faugère, J-C., Salvy, B.: Complexity of Gröbner basis computation for semi-regular overdetermined sequences over \(\mathbb {F}_2\) with solutions in \(\mathbb {F}_2\). INRIA Research Report 5049 (2003) Available via https://hal.inria.fr/inria-00071534

  5. Bardet, M., Faugère, J-C., Salvy, B., Yang, B-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In: Proceedings of MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry, (2005)

    Google Scholar 

  6. Benge, P., Burks, V. and Cobar, N.: Groebner Basis Conversion Using the FGLM Algorithm. Available at https://www.math.lsu.edu/system/files/Groeb_presentation_final.pdf

  7. Bettale, L., Faugère, J-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Cryptol. 3.3, 177–197, (2009)

    Article  MathSciNet  Google Scholar 

  8. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press (2005)

    Google Scholar 

  9. Joux, A., Vitse, V.: Elliptic Curve Discrete Logarithm Problem over Small Degree Extension Fields - Application to the Static Diffie-Hellman Problem on \(E(\mathbb {F}_{q^{5}})\). J. Cryptol. 26.1, 119–143 (2013)

    Google Scholar 

  10. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comp. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  11. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Universität Insbruck (1965)

    Google Scholar 

  12. Caminata, A., Gorla, G.: Solving multivariate polynomial systems and an invariant from commutative algebra, Arithmetic of Finite Fields, 8th International Workshop, WAIFI 2020, J.C. Bajard and A. Topuzoglu Eds., Springer (2020)

    Google Scholar 

  13. Courtois, N., Klimov, A., Patarin, J. Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Advances in Cryptology – EuroCrypt 2000, pp. 392–407. Lect. Notes Comput. Sci. 1807, Springer (2000)

    Google Scholar 

  14. Eisenbud, D., Green, M., Harris, J.: Higher Castelnuovo Theory. J. Gèom. Alg. d’Orsay. Astèrisque 218, 187–202 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Fröberg, R.: An inequality for Hilbert series of graded algebras. Math. Scand. 56, 117–144 (1985)

    Article  MathSciNet  Google Scholar 

  16. Faugère, J-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)

    Google Scholar 

  17. Gaudry, P. Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comp. 44.12, 1690–1702 (2009)

    Article  MathSciNet  Google Scholar 

  18. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  19. Hodges, T., Molina, S., Schlather, J.: On the existence of semi-regular sequences. J. Alg. 476, 519–547 (2017)

    Article  Google Scholar 

  20. Joux, A.: Algorithmic cryptanalysis. Chapman and Hall/CRC (2009)

    Google Scholar 

  21. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Advances in Cryptology– CRYPTO’ 99, pp. 19–30. Lect. Notes Comp. Sci. 1666, Springer (1999)

    Google Scholar 

  22. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer (2005)

    Google Scholar 

  23. Lazard, D., Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: European Conference on Computer Algebra, pp. 146–156. Springer, Heidelberg (1983)

    Google Scholar 

  24. Migliore, J., Mirò-Roig, R.: On the minimal free resolution of n+1 general forms. T. Am. Math. Soc. 355.1, 1–36 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Pardue, K.: Generic polynomials. Preprint (1999)

    Google Scholar 

  26. Pardue, K.: Generic sequences of polynomials. J. Alg. 324.4, 579–590 (2010)

    Article  MathSciNet  Google Scholar 

  27. Pardue, K., Richert, B.: Syzygies of semi-regular sequences. Illinois J. Math. 53.1, 349–364 (2009)

    Article  MathSciNet  Google Scholar 

  28. Stanley, R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Alg. Disc. Meth. 1, 168–184 (1980)

    Article  MathSciNet  Google Scholar 

  29. Trung, V.: The initial ideal of generic sequences and Fröberg’s Conjecture. J. Alg. 524, 79–96 (2019)

    Article  MathSciNet  Google Scholar 

  30. Watanabe, J.: The Dilworth number of Artinian rings and finite posets with rank function. In: Commutative Algebra and Combinatorics, pp. 303–312. Adv. Stud. Pure. Math. 11, Kinokuniya Co. North Holland, Amsterdam, (1987)

    Google Scholar 

  31. Wolfram Research, Inc.: Mathematica, Version 11.0. Champaign, IL (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Gorla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bigdeli, M., De Negri, E., Dizdarevic, M.M., Gorla, E., Minko, R., Tsakou, S. (2021). Semi-Regular Sequences and Other Random Systems of Equations. In: Cojocaru, A.C., Ionica, S., García, E.L. (eds) Women in Numbers Europe III. Association for Women in Mathematics Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-77700-5_3

Download citation

Publish with us

Policies and ethics