Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Pairing-Free Signature Scheme from Correlation Intractable Hash Function and Strong Diffie-Hellman Assumption

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2022 (CT-RSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13161))

Included in the following conference series:

  • 927 Accesses

Abstract

Goh and Jarecki (Eurocrypt 2003) showed how to get a signature scheme from the computational Diffie-Hellman assumption, and they introduced the name EDL for signatures of this type. The corresponding EDL family of signature schemes is remarkable for several reasons: elegance, simplicity and tight security. However, EDL security proofs stand in the random oracle model, and, to the best of our knowledge, extending this family without using an idealization of hash functions has never been successful.

In this paper, we propose a new signature scheme belonging to the EDL family, which is simple, natural and efficient, without using the random oracle model. Our scheme is based on the very same assumption than the Boneh-Boyen scheme, namely the strong Diffie-Hellman assumption, with the precision that our groups are not bound to being bilinear. We also make use of a correlation-intractable hash function, for a particular relation related to discrete-logarithm.

In addition to the theoretical interest of extending the EDL family without the random oracle model, our scheme is also one of the very few schemes which achieve discrete-log security properties without relying on pairings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We remark that other hash function idealizations or instantiations have also been investigated, e.g., in [34, 45].

  2. 2.

    Whether DL and CDH are equivalent is actually an open question.

  3. 3.

    The name EDL was proposed in [38], based upon the fact that the scheme is a proof of equality of discrete-logarithms.

  4. 4.

    A remarkable unification of [38, 51] papers appeared in [39].

  5. 5.

    Notably, the very same idea can be applied on Probabilistic RSA-FDH to get a tight signature scheme with a single extra bit.

  6. 6.

    In other words, in EDL, signing few times the same message would result in different random numbers r, while doing the same with Katz-Wang scheme would give always the same bit b.

  7. 7.

    Strictly, the equality is for Chevallier-Mames variant; for EDL or Katz-Wang, m is not an input of \(\mathcal {G}\), without changing anything to the analysis.

  8. 8.

    The reader is referred to original papers [18, 38, 39, 51] for more formal proofs.

  9. 9.

    Notably, \(\mathcal {F}\) and \(\mathcal {G}\) definitions cannot suppose the generator g to be already defined.

  10. 10.

    One may read [13, 21, 50] for state of the art on this area of research.

  11. 11.

    If \(\mathcal {F}\) and g were chosen by the solver, this latter could trivially pick any \((m, g, g^{a_1},g^{a_2},...,g^{a_{n}})\), precompute \(f = \mathcal {G}(m,g,g^{a_1},g^{a_2},...,g^{a_{n}})\), and choose \(\mathcal {F}(a_1, a_2,..., a_{n})\) as the constant function f.

  12. 12.

    Hence, our scheme does not ensure strong existential unforgeability, but only existential unforgeability, which is sufficient in most usages.

  13. 13.

    Remind that \(m \ne m_i\), since the forgery is assumed to be valid.

References

  1. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive composition of sigma-protocols via share-then-hash. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_25

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_23

    Chapter  Google Scholar 

  3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22

    Chapter  Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security - ACM CCS 1993, pp. 62–73. ACM Press (1993)

    Google Scholar 

  5. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). https://doi.org/10.1007/s00145-007-9005-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  9. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)

    Article  MathSciNet  Google Scholar 

  10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

    Chapter  Google Scholar 

  12. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  13. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_4

    Chapter  Google Scholar 

  14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: ACM Symposium on the Theory of Computing - STOC 1998, pp. 209–218. ACM Press (1998)

    Google Scholar 

  15. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)

    Article  MathSciNet  Google Scholar 

  16. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  17. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1

    Chapter  Google Scholar 

  18. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight security reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_31

    Chapter  Google Scholar 

  19. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_22

    Chapter  Google Scholar 

  20. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_14

    Chapter  Google Scholar 

  21. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 442–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_15

    Chapter  MATH  Google Scholar 

  22. Cramer, R., Damgård, I.: Secure signature schemes based on interactive protocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 297–310. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_24

    Chapter  Google Scholar 

  23. Cramer, R., Damgård, I.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_14

    Chapter  Google Scholar 

  24. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  25. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. ACM Trans. Inf. Syst. Secur. (TISSEC) 3(3), 161–185 (2000)

    Article  Google Scholar 

  26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  27. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_27

    Chapter  Google Scholar 

  28. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  29. Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_23

    Chapter  Google Scholar 

  30. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  32. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_9

    Chapter  Google Scholar 

  33. Fischlin, M., Harasser, P., Janson, C.: Signatures from Sequential-OR Proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_8

    Chapter  Google Scholar 

  34. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_18

    Chapter  Google Scholar 

  35. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z

    Article  MathSciNet  MATH  Google Scholar 

  36. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_9

    Chapter  Google Scholar 

  37. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_42

    Chapter  Google Scholar 

  38. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_25

    Chapter  Google Scholar 

  39. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007). https://doi.org/10.1007/s00145-007-0549-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS, pp. 102–113. IEEE Computer Society (2003)

    Google Scholar 

  41. Goldwasser, S., Micali, S., Rivest, R.L.: A “paradoxical” solution to the signature problem (extended abstract). In: Symposium on Foundations of Computer Science - FOCS 1984, pp. 441–448. IEEE Press (1984)

    Google Scholar 

  42. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  Google Scholar 

  43. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_11

    Chapter  Google Scholar 

  44. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006)

    Article  MathSciNet  Google Scholar 

  45. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J. Cryptol. 25(3), 484–527 (2012)

    Article  MathSciNet  Google Scholar 

  46. Hohenberger, S., Waters, B.: Realizing Hash-and-sign signatures under standard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_19

    Chapter  Google Scholar 

  47. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_38

    Chapter  Google Scholar 

  48. Jakobsson, M., Schnorr, C.P.: Efficient oblivious proofs of correct exponentiation. In: Communications and Multimedia Security - CMS 1999. IFIP Conference Proceedings, vol. 152, pp. 71–86. IFIP (1999)

    Google Scholar 

  49. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://doi.org/10.1007/10722028_23

    Chapter  Google Scholar 

  50. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From Obfuscation to the Security of Fiat-Shamir for Proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_8

    Chapter  Google Scholar 

  51. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In: ACM Conference on Computer and Communications Security - ACM CCS 2003, pp. 155–164. ACM Press (2003)

    Google Scholar 

  52. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Network and Distributed System Security Symposium - NDSS 2000, pp. 143–154 (2000)

    Google Scholar 

  53. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_22

    Chapter  Google Scholar 

  54. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes. J. Cryptol. 15(1), 1–18 (2002). https://doi.org/10.1007/s00145-001-0005-8

    Article  MathSciNet  MATH  Google Scholar 

  55. Naccache, D., Pointcheval, D., Stern, J.: Twin signatures: an alternative to the hash-and-sign paradigm. In: ACM Conference on Computer and Communications Security - ACM CCS 2001, pp. 20–27. ACM Press (2001)

    Google Scholar 

  56. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 1989 Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 33–43. ACM (1989)

    Google Scholar 

  57. Paillier, P.: Impossibility proofs for RSA signatures in the standard model. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 31–48. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_3

    Chapter  MATH  Google Scholar 

  58. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_1

    Chapter  Google Scholar 

  59. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

    Chapter  Google Scholar 

  60. Poupard, G., Stern, J.: Security analysis of a practical “on the fly’’ authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 422–436. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054143

    Chapter  Google Scholar 

  61. Rabin, M.O.: Digital signatures and public-key functions as intractable as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979

    Google Scholar 

  62. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  63. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 1990 Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM (1990)

    Google Scholar 

  64. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MathSciNet  MATH  Google Scholar 

  65. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_33

    Chapter  MATH  Google Scholar 

  66. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_21

    Chapter  Google Scholar 

  67. Stern, J.: Why provable security matters? In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 449–461. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_28

    Chapter  Google Scholar 

  68. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_7

    Chapter  MATH  Google Scholar 

  69. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

  70. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_20

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees and Marc Fischlin for their useful remarks, Pascal Paillier and Marc Joye for their careful reading of this paper and finally Jeremy Bradley-Silverio Donato for his edits. More personal thanks go to Amal and Mathieu for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Chevallier-Mames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chevallier-Mames, B. (2022). A Pairing-Free Signature Scheme from Correlation Intractable Hash Function and Strong Diffie-Hellman Assumption. In: Galbraith, S.D. (eds) Topics in Cryptology – CT-RSA 2022. CT-RSA 2022. Lecture Notes in Computer Science(), vol 13161. Springer, Cham. https://doi.org/10.1007/978-3-030-95312-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95312-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95311-9

  • Online ISBN: 978-3-030-95312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics