Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

What to Tag Your Microblog: Hashtag Recommendation Based on Topic Analysis and Collaborative Filtering

  • Conference paper
Web Technologies and Applications (APWeb 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8709))

Included in the following conference series:

  • 3486 Accesses

Abstract

Hashtags are often utilized as metadata tags to mark messages for user-defined topics in a microblogging environment. However, difficulties in providing or selecting appropriate hashtags often force users giving up using them. In this paper, we propose a personalized method for hashtag recommendation that combines advantages of both topical information and collaborative intelligence. On one hand, we characterize the topic relevance of hashtags to posts based on content models. On the other hand, we predict an active user’s hashtag usage preference in a collaborative filtering manner. Overall, we recommend hashtags by relevant scores for a specific microblog posted by a specific user. Experimental results show that our model is an effective solution for hashtag suggestion (MRR is around 96%) which outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational tagging in twitter. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, HT 2010, pp. 173–178. ACM, New York (2010)

    Google Scholar 

  2. Zangerle, E., Gassler, W., Specht, G.: Using tag recommendations to homogenize folksonomies in microblogging environments. In: Datta, A., Shulman, S., Zheng, B., Lin, S.-D., Sun, A., Lim, E.-P. (eds.) SocInfo 2011. LNCS, vol. 6984, pp. 113–126. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Mazzia, A., Juett, J.: Suggesting hashtags on twitter. Technical report (2009)

    Google Scholar 

  4. Li, T., Wu, Y., Zhang, Y.: Twitter hash tag prediction algorithm. In: Proceedings of the 2011 International Conference on Internet Computing, ICOMP 2011 (2011)

    Google Scholar 

  5. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using topic models for twitter hashtag recommendation. In: Proceedings of the 22nd International Conference on World Wide Web Companion, WWW 2013 Companion, pp. 593–596. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2013)

    Google Scholar 

  6. Ding, Z., Zhang, Q., Huang, X.: Automatic hashtag recommendation for microblogs using topic-specific translation model. In: Proceedings of the 24th International Conference on Computational Linguistics, COLING 2012 Poster, pp. 265–274 (2012)

    Google Scholar 

  7. Ding, Z., Qiu, X., Zhang, Q., Huang, X.: Learning topical translation model for microblog hashtag suggestion. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 2078–2084. AAAI Press (2013)

    Google Scholar 

  8. Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On recommending hashtags in twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 337–350. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: Proceedings of the First Workshop on Social Media Analytics, SOMA 2010, pp. 80–88. ACM, New York (2010)

    Google Scholar 

  10. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999, pp. 230–237. ACM, New York (1999)

    Chapter  Google Scholar 

  11. Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving lda topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, pp. 889–892. ACM, New York (2013)

    Google Scholar 

  12. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  13. Griffiths, T.: Gibbs sampling in the generative model of Latent Dirichlet Allocation. Technical report, Stanford University (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Qu, J., Liu, J., Chen, J., Huang, Y. (2014). What to Tag Your Microblog: Hashtag Recommendation Based on Topic Analysis and Collaborative Filtering. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds) Web Technologies and Applications. APWeb 2014. Lecture Notes in Computer Science, vol 8709. Springer, Cham. https://doi.org/10.1007/978-3-319-11116-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11116-2_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11115-5

  • Online ISBN: 978-3-319-11116-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics