Abstract
In microblogging services, users can generate hashtags to categorize their tweets. However, a majority of microblogs do not contain hashtags, which has intrigued active research on the problem of automatic hashtag recommendation for microblogs. Previous work conducted on this problem mostly does not take the user’s preference into consideration. In this paper, we propose a novel personalized hashtag recommendation method for microblogs based on a probabilistic generative model which exploits users’ perspectives on microblog posts for hashtag generation. Our experiments on a real microblogs dataset show that the proposed method outperforms state-of-the-art methods. We also show some case studies that demonstrate the advantages of considering both the content and user’s personal preferences for hashtag suggestion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandyopadhyay, A., Ghosh, K., Majumder, P., Mitra, M.: Query expansion for microblog retrieval. Int. J. Web Sci. 1(4), 368–380 (2012)
Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with popular hashtags in twitter. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 1794–1798. ACM (2012)
Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)
Diao, Q., Jiang, J., Zhu, F., Lim, E.P.: Finding bursty topics from microblogs. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 536–544. Association for Computational Linguistics (2012)
Ding, Z., Qiu, X., Zhang, Q., Huang, X.: Learning topical translation model for microblog hashtag suggestion. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2078–2084. AAAI Press (2013)
Ding, Z., Zhang, Q., Huang, X.: Automatic hashtag recommendation for microblogs using topic-specific translation model. Proc. COLING 2012, 265–274 (2012)
Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 67–74. ACM (2008)
Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using topic models for twitter hashtag recommendation. In: Proceedings of the 22nd International Conference on World Wide Web Companion, pp. 593–596. International World Wide Web Conferences Steering Committee (2013)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci. USA 101(Suppl 1), 5228–5235 (2004)
Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On recommending hashtags in twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 337–350. Springer, Heidelberg (2012)
Li, T., Wu, Y., Zhang, Y.: Twitter hash tag prediction algorithm. In: ICOMP11 - The 2011 International Conference on Internet Computing (2011)
Liu, Z., Liang, C., Sun, M.: Topical word trigger model for keyphrase extraction. In: COLING, pp. 1715–1730 (2012)
Mazzia, A., Juett, J.: Suggesting hashtags on twitter (2009)
Tariq, A., Karim, A., Gomez, F., Foroosh, H.: Exploiting topical perceptions over multi-lingual text for hashtag suggestion on twitter. In: The Twenty-Sixth International FLAIRS Conference (2013)
Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1031–1040. ACM (2011)
Zangerle, E., Gassler, W., Specht, G.: Recommending#-tags in twitter. In: Proceedings of the Workshop on Semantic Adaptive Social Web (SASWeb 2011), CEUR Workshop Proceedings, vol. 730, pp. 67–78 (2011)
Zangerle, E., Gassler, W., Specht, G.: On the impact of text similarity functions on hashtag recommendations in microblogging environments. Soc. Netw. Anal. Min. 3(4), 1–10 (2013)
Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media Singapore
About this paper
Cite this paper
Xu, J., Zhang, Q., Huang, X. (2015). Personalized Hashtag Suggestion for Microblogs. In: Zhang, X., Sun, M., Wang, Z., Huang, X. (eds) Social Media Processing. SMP 2015. Communications in Computer and Information Science, vol 568. Springer, Singapore. https://doi.org/10.1007/978-981-10-0080-5_4
Download citation
DOI: https://doi.org/10.1007/978-981-10-0080-5_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-0079-9
Online ISBN: 978-981-10-0080-5
eBook Packages: Computer ScienceComputer Science (R0)