Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Personalized Hashtag Suggestion for Microblogs

  • Conference paper
  • First Online:
Social Media Processing (SMP 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 568))

Included in the following conference series:

Abstract

In microblogging services, users can generate hashtags to categorize their tweets. However, a majority of microblogs do not contain hashtags, which has intrigued active research on the problem of automatic hashtag recommendation for microblogs. Previous work conducted on this problem mostly does not take the user’s preference into consideration. In this paper, we propose a novel personalized hashtag recommendation method for microblogs based on a probabilistic generative model which exploits users’ perspectives on microblog posts for hashtag generation. Our experiments on a real microblogs dataset show that the proposed method outperforms state-of-the-art methods. We also show some case studies that demonstrate the advantages of considering both the content and user’s personal preferences for hashtag suggestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://blog.twitter.com/2013/celebrating-twitter7.

  2. 2.

    http://techcrunch.com/2013/09/25/google-starts-supporting-google-hashtags-in-search-queries/.

  3. 3.

    http://weibo.com/.

  4. 4.

    http://ictclas.org/Down_OpenSrc.asp.

References

  1. Bandyopadhyay, A., Ghosh, K., Majumder, P., Mitra, M.: Query expansion for microblog retrieval. Int. J. Web Sci. 1(4), 368–380 (2012)

    Article  Google Scholar 

  2. Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with popular hashtags in twitter. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 1794–1798. ACM (2012)

    Google Scholar 

  3. Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)

    Google Scholar 

  4. Diao, Q., Jiang, J., Zhu, F., Lim, E.P.: Finding bursty topics from microblogs. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 536–544. Association for Computational Linguistics (2012)

    Google Scholar 

  5. Ding, Z., Qiu, X., Zhang, Q., Huang, X.: Learning topical translation model for microblog hashtag suggestion. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2078–2084. AAAI Press (2013)

    Google Scholar 

  6. Ding, Z., Zhang, Q., Huang, X.: Automatic hashtag recommendation for microblogs using topic-specific translation model. Proc. COLING 2012, 265–274 (2012)

    Google Scholar 

  7. Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 67–74. ACM (2008)

    Google Scholar 

  8. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using topic models for twitter hashtag recommendation. In: Proceedings of the 22nd International Conference on World Wide Web Companion, pp. 593–596. International World Wide Web Conferences Steering Committee (2013)

    Google Scholar 

  9. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci. USA 101(Suppl 1), 5228–5235 (2004)

    Article  Google Scholar 

  10. Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On recommending hashtags in twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 337–350. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Li, T., Wu, Y., Zhang, Y.: Twitter hash tag prediction algorithm. In: ICOMP11 - The 2011 International Conference on Internet Computing (2011)

    Google Scholar 

  12. Liu, Z., Liang, C., Sun, M.: Topical word trigger model for keyphrase extraction. In: COLING, pp. 1715–1730 (2012)

    Google Scholar 

  13. Mazzia, A., Juett, J.: Suggesting hashtags on twitter (2009)

    Google Scholar 

  14. Tariq, A., Karim, A., Gomez, F., Foroosh, H.: Exploiting topical perceptions over multi-lingual text for hashtag suggestion on twitter. In: The Twenty-Sixth International FLAIRS Conference (2013)

    Google Scholar 

  15. Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1031–1040. ACM (2011)

    Google Scholar 

  16. Zangerle, E., Gassler, W., Specht, G.: Recommending#-tags in twitter. In: Proceedings of the Workshop on Semantic Adaptive Social Web (SASWeb 2011), CEUR Workshop Proceedings, vol. 730, pp. 67–78 (2011)

    Google Scholar 

  17. Zangerle, E., Gassler, W., Specht, G.: On the impact of text similarity functions on hashtag recommendations in microblogging environments. Soc. Netw. Anal. Min. 3(4), 1–10 (2013)

    Article  Google Scholar 

  18. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this paper

Cite this paper

Xu, J., Zhang, Q., Huang, X. (2015). Personalized Hashtag Suggestion for Microblogs. In: Zhang, X., Sun, M., Wang, Z., Huang, X. (eds) Social Media Processing. SMP 2015. Communications in Computer and Information Science, vol 568. Springer, Singapore. https://doi.org/10.1007/978-981-10-0080-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0080-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0079-9

  • Online ISBN: 978-981-10-0080-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics