Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Structure of the Infinite Models in Integer Programming

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

  • 1610 Accesses

Abstract

The infinite models in integer programming can be described as the convex hull of some points or as the intersection of halfspaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for finite dimensional corner polyhedra. One consequence is that nonnegative continuous functions suffice to describe finite dimensional corner polyhedra with rational data. We also discover new facts about corner polyhedra with non-rational data.

A. Basu and J. Paat—Supported by the NSF grant CMMI1452820.

M. Conforti and M. Di Summa—Supported by the grant “Progetto di Ateneo 2013”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Such results are obtainable in the case \(n=1\) by more elementary means such as interpolation. We are unaware of a way to establish these results for general \(n\ge 2\) without using the technology developed in this paper.

  2. 2.

    For an explicit construction of such a function, see the journal version of the paper.

References

  1. Aczél, J., Dhombres, J.G.: Functional Equations in Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 31. Cambridge University Press (1989)

    Google Scholar 

  2. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35, 704–720 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation I: foundations and taxonomy. 4OR 14(1), 1–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation II: sufficient conditions for extremality, sequences, and algorithms. 4OR 14(2), 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, A., Paat, J.: Operations that preserve the covering property of the lifting region. SIAM J. Optim. 25(4), 2313–2333 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271. Springer, Switzerland (2014)

    MATH  Google Scholar 

  7. Dash, S., Günlük, O.: Valid inequalities based on simple mixed-integer sets. Math. Program. 105, 29–53 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dey, S.S., Richard, J.P.P., Li, Y., Miller, L.A.: On the extreme inequalities of infinite group problems. Math. Program. 121(1), 145–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with \(n\) distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2(4), 451–558 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, I. Math. Program. 3, 23–85 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, II. Math. Program. 3, 359–389 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hildebrand, R.: Algorithms and cutting planes for mixed integer programs. Ph.D. thesis, University of California, Davis, June 2013

    Google Scholar 

  14. Johnson, E.L.: On the group problem for mixed integer programming. Math. Program. Study 2, 137–179 (1974)

    Article  MathSciNet  Google Scholar 

  15. Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the gomory-johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Grundlehren der mathematischen Wissenschaften, vol. 305 (1996)

    Google Scholar 

  17. Letchford, A.N., Lodi, A.: Strengthening Chvátal-Gomory cuts and gomory fractional cuts. Oper. Res. Lett. 30(2), 74–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, L.A., Li, Y., Richard, J.P.P.: New inequalities for finite and infinite group problems from approximate lifting. Naval Res. Logistics (NRL) 55(2), 172–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yıldız, S., Cornuéjols, G.: Cut-generating functions for integer variables. Math. Oper. Res. 41, 1381–1403 (2016)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Di Summa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Basu, A., Conforti, M., Di Summa, M., Paat, J. (2017). The Structure of the Infinite Models in Integer Programming. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics