Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Neural Networks: A Signal Processing Perspective

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

Deep learning has rapidly become the state of the art in machine learning, surpassing traditional approaches by a significant margin for many widely studied benchmark sets. Although the basic structure of a deep neural network is very close to a traditional 1990s style network, a few novel components enable successful training of extremely deep networks, thus allowing a completely novel sphere of applications—often reaching human-level accuracy and beyond. Below, we familiarize the reader with the brief history of deep learning and discuss the most significant milestones over the years. We also describe the fundamental components of a modern deep neural networks and emphasize their close connection to the basic operations of signal processing, such as the convolution and the Fast Fourier Transform. We study the importance of pretraining with examples and, finally, we will discuss the real time deployment of a deep network; a topic often dismissed in textbooks; but increasingly important in future applications, such as self driving cars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/History_of_artificial_intelligence.

  2. 2.

    http://nips.cc/.

  3. 3.

    http://www.gartner.com/newsroom/id/3784363.

  4. 4.

    http://www.gq.com/story/alexandre-robicquet-ysl-model.

  5. 5.

    The full Python implementation is available at https://github.com/mahehu/TUT-live-age-estimator.

  6. 6.

    http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/facebook-ai-director-yann-lecun-on-deep-learning.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

    Google Scholar 

  2. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., et al.: Theano: A python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688 (2016)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Proceedings of ICLR2015 (2015)

    Google Scholar 

  4. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Neural networks: Tricks of the trade, pp. 437–478. Springer (2012)

    Google Scholar 

  5. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang, Z.: Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

    Google Scholar 

  6. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.: cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)

    Google Scholar 

  7. Chollet, F.: Keras. https://github.com/fchollet/keras (2015)

  8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Proceedings of NIPS conference (2014)

    Google Scholar 

  9. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for machine learning. In: BigLearn, NIPS Workshop (2011)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09 (2009)

    Google Scholar 

  11. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research 12(Jul), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  13. Gemmeke, J.F., Ellis, D.P.W., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C., Plakal, M., Ritter, M.: Audio set: An ontology and human-labeled dataset for audio events. In: Proc. IEEE ICASSP 2017. New Orleans, LA (2017)

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  15. Haykin, S., Network, N.: A comprehensive foundation. Neural Networks 2(2004), 41 (2004)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  17. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., Silver, D.: Rainbow: Combining Improvements in Deep Reinforcement Learning. ArXiv e-prints (2017). Submitted to AAAI2018

    Google Scholar 

  18. Hinton, G.E.: Learning multiple layers of representation. Trends in Cognitive Sciences 11(10), 428–434 (2007)

    Article  Google Scholar 

  19. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  21. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  22. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128–3137 (2015)

    Google Scholar 

  23. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International Conference on Learning Representations (2015)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  25. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural computation 1(4), 541–551 (1989)

    Article  Google Scholar 

  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE pp. 2278–2324 (1998)

    Article  Google Scholar 

  27. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  28. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Rothe, R., Timofte, R., Gool, L.V.: Dex: Deep expectation of apparent age from a single image. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2015)

    Google Scholar 

  31. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision (IJCV) (2016)

    Google Scholar 

  32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–538 (1986)

    Article  Google Scholar 

  33. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cognitive modeling 5(3), 1 (1988)

    MATH  Google Scholar 

  34. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  35. Schölkopf, B., Smola, A.J.: Learning with kernels. The MIT Press (2001)

    Google Scholar 

  36. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp. 568–576 (2014)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

    Google Scholar 

  38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  39. Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal processing. IEEE Signal Processing Magazine 26(3) (2009)

    Article  Google Scholar 

  40. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast convolutional nets with fbfft: A gpu performance evaluation. arXiv preprint arXiv:1412.7580 (2014)

    Google Scholar 

  41. Vedaldi, A., Lenc, K.: Matconvnet – convolutional neural networks for matlab. In: Proceeding of the ACM Int. Conf. on Multimedia (2015)

    Google Scholar 

  42. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I–I. IEEE (2001)

    Google Scholar 

  43. Widrow, B.: Thinking about thinking: the discovery of the lms algorithm. IEEE Signal Processing Magazine 22(1), 100–106 (2005). https://doi.org/10.1109/MSP.2005.1407720

    Article  Google Scholar 

  44. Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., Kuchaiev, O., Zhang, Y., Seide, F., Wang, H., et al.: An introduction to computational networks and the computational network toolkit. Microsoft Technical Report MSR-TR-2014–112 (2014)

    Google Scholar 

  45. Zhu, L.: Gene expression prediction with deep learning. M.Sc. Thesis, Tampere University of Technology (2017)

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge CSC - IT Center for Science Ltd. for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heikki Huttunen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huttunen, H. (2019). Deep Neural Networks: A Signal Processing Perspective. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91734-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91734-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91733-7

  • Online ISBN: 978-3-319-91734-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics