Abstract
Side Channel Analysis (SCA) is a class of attacks that exploits leakage of information from a cryptographic implementation during execution. To thwart it, masking is a common countermeasure. The principle is to randomly split every sensitive intermediate variable occurring in the computation into several shares and the number of shares, called the masking order, plays the role of a security parameter. The main issue while applying masking to protect a block cipher implementation is to specify an efficient scheme to secure the s-box computations. Several masking schemes, applicable for arbitrary orders, have been recently introduced. Most of them follow a similar approach originally introduced in the paper of Carlet et al. published at FSE 2012; the s-box to protect is viewed as a polynomial and strategies are investigated which minimize the number of field multiplications which are not squarings. This paper aims at presenting all these works in a comprehensive way. The methods are discussed, their differences and similarities are identified and the remaining open problems are listed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A function f is \(\mathbb {F}_{2}\)-linear if it satisfies \(f(x\oplus y)=f(x)\oplus f(y)\) for any pair (x, y) of elements in its domain. This property must not be confused with \(\mathbb {F}_{2^m}\)-linearity of a function, where m divides n and is larger than 1, which is defined such that \(f(ax \oplus by)=af(x)\oplus bf(y)\), for every \(a,b\in \mathbb {F}_{2^m}\). An \(\mathbb {F}_{2^m}\)-linear function is \(\mathbb {F}_{2}\)-linear but the converse is false in general.
- 2.
A multiplication over a field of characteristic 2 is \(\mathbb {F}_{2}\)-linear if it corresponds to a Frobenius automorphism, i.e. to a series of squarings.
- 3.
- 4.
Such improvement was already known in the context of multi-party computation [22].
- 5.
Where \(\ell +1\) corresponds to the code length and where k (resp. d) denotes its dimension (resp. minimum distance).
- 6.
- 7.
Recall that a multiplication over a field of characteristic 2 corresponding to a Frobenius automorphism, i.e. to a series of squarings, is \(\mathbb {F}_{2}\)-linear.
- 8.
i.e. a linear combination of monomials in the form \(x^{2^j}\) with \(j < n\).
- 9.
Implementations have been done in C and compiled for ATMEGA644p micro-controller thanks to the compiler avr_gcc with optimisation flag -o2.
- 10.
These attacks assume that the adversary is not limited to the observation of d intermediate results during the evaluation but can observe any family of intermediate results.
References
Akkar, M.-L., Goubin, L.: A generic protection against high-order differential power analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205. Springer, Heidelberg (2003)
Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012)
Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation within cryptographic algorithms: the DSS case. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM, New York (1988)
Blakely, G.: Safeguarding cryptographic keys. In: National Computer Conference, vol. 48, pp. 313–317. AFIPS Press, New York, June 1979
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier and Verbauwhede [48], pp. 450–466
Brauer, A.: On addtion chains. Bull. Amer. MAth. Soc. 45, 736–739 (1939)
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)
Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for s-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)
Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, pp. 742–763. Springer, Heidelberg (2015)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 398. Springer, Heidelberg (1999)
Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)
Cook, S.A.: On the minimum computation time of functions. Ph.D. thesis, Harvard University, Cambridge, MA, USA (1966). http://cr.yp.to/bib/entries.html#1966/cook
Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidelberg (2014)
Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014)
Coron, J.-S.: A new DPA countermeasure based on permutation tables. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 278–292. Springer, Heidelberg (2008)
Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014)
Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion of security proofs from one leakage model to another: a new issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Heidelberg (2012)
Yoo, H.S., Kim, C.K., Ha, J.C., Moon, S.-J., Park, I.H.: Side channel cryptanalysis on SEED. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 411–424. Springer, Heidelberg (2005)
Coron, J.-S., Prouff, E., Roche, T.: On the use of shamir’s secret sharing against side-channel analysis. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 77–90. Springer, Heidelberg (2013)
Courtois, N.T., Goubin, L.: An algebraic masking method to protect AES against power attacks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 199–209. Springer, Heidelberg (2006)
Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty computation with nearly optimal work and resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)
Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)
Eve, J.: The evaluation of polynomials. Comm. ACM 6(1), 17–21 (1964)
Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)
Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) STOC, pp. 699–710. ACM, New York (1992)
Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)
Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fact-track multiparty computations with applications to threshold cryptography. In: PODC, pp. 101–111 (1998)
Goubin, L., Martinelli, A.: Protecting AES with shamir’s secret sharing scheme. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 79–94. Springer, Heidelberg (2011)
Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked s-boxes processing – a step forward –. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 251–266. Springer, Heidelberg (2014)
Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 400–416. Springer, Heidelberg (2013)
Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how large is the gap for aes? J. Cryptographic Eng. 4(1), 47–57 (2014)
Gueron, S., Parzanchevsky, O., Zuk, O.: Masked inversion in GF(\(2^{n}\)) usingmixed field representations and its efficient implementation for AES. In: Nedjah, N., Mourelle, L.M. (eds.) Embedded Cryptographic Hardware: Methodologies and Architectures, pp. 213–228. Nova Science Publishers, New York (2004)
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)
Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Transl. Acad. J. Phys. Dokl. 7, 595–596 (1963). Proceedings of the USSR Academy of Sciences, 145, pp. 293–294 (1962)
Kim, H.S., Hong, S., Lim, J.: A fast and provably secure higher-order masking of AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 95–107. Springer, Heidelberg (2011)
Knuth, D.: The Art of Computer Programming, vol. 2, 3rd edn. Addison Wesley, USA (1988)
Knuth, D.E.: Evaluation of polynomials by computers. Comm. ACM 5(12), 137–138 (1962)
Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)
Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)
Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)
Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006)
Massey, J.: Minimal codewords and secret sharings. In: Sixth Joint Sweedish-Russian Workshop on Information Theory, pp. 246–249 (1993)
Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)
Moradi, A., Mischke, O.: How far should theory be from practice? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 92–106. Springer, Heidelberg (2012)
Omura, J., Massey, J.: Computational method and apparatus for finite fieldarithmetic. Technical report, Omnet Associates. Patent Number 4,587,627, May 1986
Paterson, M., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)
Prouff, E., McEvoy, R.: First-order side-channel attacks on the permutation tables countermeasure. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 81–96. Springer, Heidelberg (2009)
Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)
Prouff, E., Rivain, M., Roche, T.: On the practical security of a leakage resilient masking scheme. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 169–182. Springer, Heidelberg (2014)
Prouff, E., Roche, T.: Attack on a higher-order masking of the aes based on homographic functions. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 262–281. Springer, Heidelberg (2010)
Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)
Renner, S.: Protection des Algorithmes Cryptographiques Embarqués. Ph.D. thesis, University of Bordeaux (2014). http://www.math.u-bordeaux1.fr/~srenner/Thesis_Soline_Renner.pdf
Rivain, M., Prouff, E.: Provably Secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)
Roche, T., Prouff, E.: Higher-order glitch free implementation of the AES using secure multi-party computation protocols - extended version. J. Cryptographic Eng. 2(2), 111–127 (2012)
Coron, J.-S., Kizhvatov, I., Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 417–434. Springer, Heidelberg (2013)
Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer, Heidelberg (2001)
Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)
Sunar, B., Koç, C.K.: An efficient optimal normal basis type II multiplier. IEEE Trans. Comput. 50(1), 83–87 (2001)
Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers. Sov. Math. Dokl., 3, 714–716 (1963). http://www.de.ufpe.br/toom/articles/engmat/MULT-E.PDF
von zur Gathen, J.: Efficient and optimal exponentiation in finite fields. Comput. Complex. 1, 360–394 (1991)
von zur Gathen, J., Shokrollahi, M.A., Shokrollahi, J.: Efficient multiplication using type 2 optimal normal bases. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 55–68. Springer, Heidelberg (2007)
Wang, Y., Zhu, X.: A fast algorithm for the Fourier transform over finite fields and its VLSI implementation. IEEE J. Sel. Areas Commun. 6(3), 572–577 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Carlet, C., Prouff, E. (2016). Polynomial Evaluation and Side Channel Analysis. In: Ryan, P., Naccache, D., Quisquater, JJ. (eds) The New Codebreakers. Lecture Notes in Computer Science(), vol 9100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49301-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-662-49301-4_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49300-7
Online ISBN: 978-3-662-49301-4
eBook Packages: Computer ScienceComputer Science (R0)