Abstract
Optical music recognition (GlossaryTerm
OMR
) describes the process of automatically transcribing music notation from a digital image. Although similar to optical character recognition (GlossaryTermOCR
), the process and procedures of OMR diverge due to the fundamental differences between text and music notation, such as the two-dimensional nature of the notation system and the overlay of music symbols on top of staff lines. The OMR process can be described as a sequence of steps, with techniques adapted from disciplines including image processing, machine learning, grammars, and notation encoding. The sequence and specific techniques used can differ depending on the condition of the image, the type of notation, and the desired output.Several commercial and open-source OMR software systems have been available since the mid-1990s. Most of them are designed to be used by individuals and recognize common (post-18th-century) Western music notation, though there have been some efforts to recognize other types of music notation such as for the lute and for earlier Western music.
Even though traditional applications of OMR have focused on small-scale recognition tasks, typically as an automated method of musical entry for score editing, new applications of large-scale OMR are under development, where automated recognition is the central technology for building full-music search systems, similar to the large-scale full-text recognition efforts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- k-NN:
-
k-nearest-neighbor
- ASCII:
-
American standard code for information interchange
- BD:
-
book-dependent
- BI:
-
book-independent
- CWMN:
-
common Western music notation
- DARMS:
-
digital alternative representation of music scores
- EsAC:
-
Essen associative code
- GPL:
-
general public license
- HMM:
-
hidden Markov model
- HTML:
-
hyper-text markup language
- MAP:
-
maximum a posteriori
- MIDI:
-
musical instrument digital interface
- NIFF:
-
notation interchange file format
- NN:
-
neural network
- OCR:
-
optical character recognition
- ODD:
-
one document does it all
- OMR:
-
optical music recognition
References
D.H. Shepard: Apparatus for reading, Patent Application 2664758 (1951)
D. Martin: David H. Shepard, 84, Dies; Optical Reader Inventor, New York Times, 11 December 2007
D. Pruslin: Automatic Recognition of Sheet Music, Sc. D. Diss. (Massachusetts Institute of Technology, Cambridge 1966)
D. Prerau: Computer Pattern Recognition of Standard Engraved Music Notation, PhD Diss. (Massachusetts Institute of Technology, Cambridge 1970)
A. Samuel: The banishment of paper-work, New Sci. 21(380), 529–530 (1964)
S. Mori, C. Suen, K. Yamamoto: Historical review of OCR research and development, Proc. IEEE 80(7), 1029–1058 (1992)
D.S. Prerau: Computer pattern recognition of printed music. In: Fall Joint Computer Conference 1971, AFIP Conf. Proc., Vol. 39 (1971) pp. 153–162
D. Blostein, H.S. Baird: A critical survey of music image analysis. In: Structured Document Image Analysis, ed. by H.S. Baird, H. Bunke, K. Yamamoto (Springer, Berlin 1992) pp. 405–434
C. Dalitz, T. Karsten: Using the Gamera framework for building a lute tablature recognition system. In: 6th Int. Soc. Music Inf. Retr. Conf. (ISMIR) (2005) pp. 478–481
L.L. Wei, Q.A. Salih, H.S. Hock: Optical tablature recognition (OTR) system: Using Fourier descriptors as a recognition tool. In: 2008 International Conference on Audio, Language and Image Processing, Shanghai (2008) pp. 1532–1539, https://doi.org/10.1109/ICALIP.2008.4590235
C. Dalitz, C. Pranzas: German lute tablature recognition. In: Int. Conf. Document Anal. Recognit. (ICDAR) (2009) pp. 371–375
V.G. Gezerlis, S. Theodoridis: Optical character recognition of the orthodox hellenic byzantine music notation, Pattern Recognit. 35(4), 895–914 (2002)
C. Dalitz, G.K. Michalakis, C. Pranzas: Optical recognition of psaltic Byzantine chant notation, Int. J. Doc. Anal. Recognit. (IJDAR) 11(3), 143–158 (2008)
L. Pugin: Optical music recognition of early typographic prints using hidden Markov models. In: 7th Int. Conf. Music Inf. Retr. (ISMIR) (2006) pp. 53–56
L. Tardón, S. Sammartino, I. Barbancho, V. Gómez, A. Oliver: Optical music recognition for scores written in white mensural notation, EURASIP J. Image Video Process. 2009, 843401 (2009), https://doi.org/10.1155/2009/843401
D. Bainbridge: Extensible Optical Music Recognition, PhD Diss. (University of Canterbury, Canterbury 1997)
K. MacMillan, M. Droettboom, I. Fujinaga: Gamera: Optical music recognition in a new shell. In: Proc. Int. Comput. Music Conf. (2002) pp. 482–485
D. Marr: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York 1982)
T. Pun: C. De. Garrini: Cybernétique et vision par ordinateur. In: Le déficit visuel, de la neurophysiologie à la pratique de la réadaptation, ed. by A.B. Safran, A. Assimacopoulos (Masson, Paris 2014) pp. 213–224
R. Bruyer: Le Cerveau Qui Voit (Editions Odile Jacob, Paris 2000)
A. Rebelo, I. Fujinaga, F. Paszkiewicz, A.R.S. Marcal, C. Guedes, J.S. Cardoso: Optical music recognition: State-of-the-art and open issues, Int. J. Multimed. Inf. Retr. 1(3), 173–190 (2012)
K.M. Sayre: Machine recognition of handwritten words: A project report, Pattern Recognit. 5, 213–228 (1973)
T. Plötz, G. Fink: Markov models for offline handwriting recognition: A survey, Int. J. Document Anal. Recognit. 12, 269 (2009)
K.C. Ng, R.D. Boyle: Recognition and reconstruction of primitives in music scores, Image Vis. Comput. 14(1), 39–46 (1996)
I. Fujinaga, J. Riley: Recommended best practices for digital image capture of musical scores. In: 3rd Int. Conf. Music Inf. Retr. (ISMIR) (2002) pp. 261–263
W. Koseluk: Digitalization of musical sources: An overview. In: The Virtual Score: Representation, Retrieval, Restoration, Computing in Musicology, Vol. 12, ed. by W.B. Hewlett, E. Selfridge-Field (MIT Press, Cambridge 2001) pp. 219–226
D. Bainbridge, T. Bell: The challenge of optical music recognition, Comput. Humanit. 35, 95–121 (2001)
E. Selfridge-Field: Optical recognition of musical notation: A survey of current work. In: Computational Musicology: An International Directory of Applications, Vol. 9, ed. by W.B. Hewlett, E. Selfridge-Field (1993) pp. 109–146
P. Martin, C. Bellissant: Low-level analysis of music drawings. In: 1st Int, Conf. Doc. Anal. Recognit., ICDAR pp, 417–425 (1991)
H. Fahmy, D. Blostein: A graph grammar programming style for recognition of music notation, Mach. Vis. Appl. 6, 83–99 (1993)
D. Bainbridge, T. Bell: A music notation construction engine for optical music recognition, Softw. Pract. Exp. 33(2), 173–200 (2003)
K. MacMillan, M. Droettboom, I. Fujinaga: Gamera: A structured document recognition application development environment. In: 2nd Int. Symp. Music Inf. Retr. ISMIR (2001) pp. 173–178
K.C. Ng: Music manuscript tracing. In: 4th Int. Workshop, Graphics Recognit.: Algorithms and Applications (GREC) (2001) pp. 322–334
J. Burgoyne, L. Pugin, G. Eustace, I. Fujinaga: A comparative survey of image binarisation algorithms for optical recognition on degraded musical sources. In: 8th Int. Conf. Music Inf. Retr. (ISMIR) (2007) pp. 509–512
C. Dalitz, M. Droettboom, B. Pranzas, I. Fujinaga: A comparative study of staff removal algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 753–766 (2008)
H. Miyao: Stave extraction for printed music scores. In: 3rd Int. Conf. Intell. Data Eng. Automated Learning (IDEAL) (2002) pp. 562–568
F. Rossant: A global method for music symbol recognition in typeset music sheets, Pattern Recognit. Lett. 23(10), 1129–1141 (2002)
I. Fujinaga: Exemplar-based learning in adaptive optical music recognition system. In: Int. Comput. Music Conf (1996) pp. 55–60
H. Kato, S. Inokuchi: A recognition system for printed piano music using musical knowledge and constraints. In: Int. Assoc. Pattern Recognit. Workshop on Syntactic and Struct. Pattern Recognit (1990) pp. 231–248
B. Coüasnon: Formalisation grammaticale de la connaissance a priori pour l’analyse de documents: Application aux partitions d’orchestre. In: Actes du dixième congrès Reconnaissance des Formes et Intelligence Artificielle, Rennes (1996) pp. 465–474
I. Knopke, D. Byrd: Towards musicdiff: A foundation for improved optical music recognition using multiple recognizers. In: 8th Int. Conf. Music Inf. Retr. (ISMIR) (2007) pp. 123–126
E.P. Bugge, K.L. Juncher, B.S. Mathiesen, J.G. Simonsen: Using sequence alignment and voting to improve optical music recognition from multiple recognizers. In: 12th Int. Soc. Music Inf. Retr. Conf. (ISMIR) (2011) pp. 405–410
M. Church, M.S. Cuthbert: Improving rhythmic transcriptions via probability models applied post-OMR. In: 15th Int. Soc. Music Inf. Retr. Conf. (ISMIR) (2014) pp. 643–648
H.E. Poole: Music printing. In: Music Printing and Publishing, ed. by D.W. Krummel, S. Sadie (Norton, New York 1990) pp. 3–78
R. Rasch (Ed.): Music Publishing in Europe 1600–1900 Concepts and Issues, Bibliography (Berliner Wissenschafts, Berlin 2005)
F. Rossant, I. Bloch: Robust and adaptive OMR system including Fuzzy modeling, Fusion of musical rules, and possible error detection, EURASIP J. Adv. Signal Process. 2007, 81541 (2007)
L. Pugin, J.A. Burgoyne, I. Fujinaga: MAP adaptation to improve optical music recognition of early music documents using hidden Markov models. In: 8th Int. Conf. Music Inf. Retr. (ISMIR) (2007) pp. 513–516
E. Selfridge-Field: Beyond MIDI: The Handbook of Musical Codes (MIT Press, Cambridge 1997)
Makemusic Inc.: musicXML, http://www.musicxml.com (2017)
WG_1599 – Working Group for XML Musical Application: 1599-2008 – IEEE Recommended Practice for Defining a Commonly Acceptable Musical Application Using XML, http://standards.ieee.org/findstds/standard/1599-2008.html (2017)
Music Encoding Initiative: http://www.music-encoding.org
A. Hankinson, P. Roland, I. Fujinaga: The music encoding initiative as a document-encoding framework. In: 12th Int. Soc. Music Inf. Retr. Conf. (ISMIR) (2011) pp. 293–298
A. Hankinson, L. Pugin, I. Fujinaga: An interchange format for optical music recognition applications. In: 11th Conf. Int. Soc. Music Inf. Retr. (ISMIR) (2010) pp. 51–56
T.M. Breuel, U. Kaiserslautern: The hOCR microformat for OCR workflow and results. In: Int. Conf. Document Anal. Recognit. (ICDAR) (2007) pp. 1063–1067
S. George: Evaluation in the visual perception of music. In: Visual Perception of Music Notation: Online and Offline Recognition, ed. by S. George (IRM, Hershey 2004) p. 308
M. Dawe: About Neuratron, http://www.neuratron.com (2015)
capella-software AG: Products, http://www.capella.de/us/index.cfm/products (2017)
Visiv Ltd: User comments, reviews, etc., http://www.visiv.co.uk/quote.htm (2006)
Visiv Ltd: Version History, http://www.visiv.co.uk/vershv2.htm (2006)
Graham Jones: http://www.indriid.com/grahamjones.html
Wikipedia: Audiveris, https://en.wikipedia.org/wiki/Audiveris (2017)
Laurent Pugin: Aruspix, http://www.aruspix.net
Christoph Dalitz: GAMERA Project, http://gamera.informatik.hsnr.de
G. Vigliensoni, J.A. Burgoyne, A. Hankinson, I. Fujinaga: Automatic pitch detection in printed square notation. In: Proc. Int. Soc. Music Inf. Retr. Conf., Miami (2011) pp. 423–428
L. Pugin, J. Hockman, J.A. Burgoyne, I. Fujinaga: Gamera versus Aruspix: Two optical music recognition approaches. In: 9th Int. Conf. Music Inf. Retr. (ISMIR) (2008) pp. 419–424
J. Cardoso, A. Capela, A. Rebelo, C. Guedes: A connected path approach for staff detection on a music score. In: Proc. 15th IEEE Int. Conf. Image Process (2008) pp. 1005–1008
A. Dutta, U. Pal, A. Fornés, J. Lladós: An Efficient Staff Removal Approach from Printed Musical Documents. In: Proc. 2010 20th Int. Conf. Pattern Recognit (2010) pp. 1965–1968
A. Fornés, V.C. Kieu, M. Visani, N. Journet, A. Dutta: The ICDAR/GREC 2013 Music Scores Competition: Staff removal, Lect. Notes Comput. Sci. 8746, 207–220 (2014)
Laurent Pugin: Verovio, http://www.verovio.org
L. Pugin, R. Zitellini, P. Roland: Verovio: A library for engraving MEI music notation into SVG. In: 15th Int. Conf. Music Inf. Retr. (ISMIR) (2014) pp. 107–112
McGill University: http://ddmal.github.io/diva.js (2016)
A. Hankinson, W. Liu, L. Pugin, I. Fujinaga: Diva: A web-based document image viewer. In: Conf. Theory Prac. Digital Libraries (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Fujinaga, I., Hankinson, A., Pugin, L. (2018). Automatic Score Extraction with Optical Music Recognition (OMR). In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-55004-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55002-1
Online ISBN: 978-3-662-55004-5
eBook Packages: EngineeringEngineering (R0)