Abstract
We consider the quark beam function that describes collinear initial-state radiation that is constrained by a veto on reconstructed jets. As the veto is imposed on the transverse momenta of the jets, the beam function is subject to rapidity divergences, and we use the collinear-anomaly framework to extract the perturbative matching kernels to next-to-next-to-leading order (NNLO) in the strong-coupling expansion. Our calculation is based on a novel framework that automates the computation of beam functions in Mellin space and it provides the ingredients to extend jet-veto resummations for quark-initiated processes to NNLL′ accuracy.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
A. Banfi, G.P. Salam and G. Zanderighi, NLL + NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].
T. Becher and M. Neubert, Factorization and NNLL Resummation for Higgs Production with a Jet Veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].
F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].
A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].
T. Becher, M. Neubert and L. Rothen, Factorization and N3LLp+NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].
I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet pT resummation in Higgs production at NNLL′ + NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].
A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N3LO + NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].
P.F. Monni, L. Rottoli and P. Torrielli, Higgs transverse momentum with a jet veto: a double-differential resummation, Phys. Rev. Lett. 124 (2020) 252001 [arXiv:1909.04704] [INSPIRE].
T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].
D.Y. Shao, C.S. Li and H.T. Li, Resummation Prediction on Higgs and Vector Boson Associated Production with a Jet Veto at the LHC, JHEP 02 (2014) 117 [arXiv:1309.5015] [INSPIRE].
Y. Li and X. Liu, High precision predictions for exclusive VH production at the LHC, JHEP 06 (2014) 028 [arXiv:1401.2149] [INSPIRE].
P. Jaiswal and T. Okui, Explanation of the WW excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].
Y. Wang, C.S. Li and Z.L. Liu, Resummation prediction on gauge boson pair production with a jet veto, Phys. Rev. D 93 (2016) 094020 [arXiv:1504.00509] [INSPIRE].
S. Dawson, P. Jaiswal, Y. Li, H. Ramani and M. Zeng, Resummation of jet veto logarithms at N3LLa + NNLO for W+W− production at the LHC, Phys. Rev. D 94 (2016) 114014 [arXiv:1606.01034] [INSPIRE].
F.J. Tackmann, W.J. Waalewijn and L. Zeune, Impact of Jet Veto Resummation on Slepton Searches, JHEP 07 (2016) 119 [arXiv:1603.03052] [INSPIRE].
M.A. Ebert et al., Exploiting jet binning to identify the initial state of high-mass resonances, Phys. Rev. D 94 (2016) 051901 [arXiv:1605.06114] [INSPIRE].
B. Fuks and R. Ruiz, A comprehensive framework for studying W′ and Z′ bosons at hadron colliders with automated jet veto resummation, JHEP 05 (2017) 032 [arXiv:1701.05263] [INSPIRE].
L. Arpino, A. Banfi, S. Jäger and N. Kauer, BSM WW production with a jet veto, JHEP 08 (2019) 076 [arXiv:1905.06646] [INSPIRE].
S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-Dependent Jet Vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].
S. Gangal, J.R. Gaunt, F.J. Tackmann and E. Vryonidou, Higgs Production at NNLL′ + NNLO using Rapidity Dependent Jet Vetoes, JHEP 05 (2020) 054 [arXiv:2003.04323] [INSPIRE].
A. Hornig, D. Kang, Y. Makris and T. Mehen, Transverse Vetoes with Rapidity Cutoff in SCET, JHEP 12 (2017) 043 [arXiv:1708.08467] [INSPIRE].
J.K.L. Michel, P. Pietrulewicz and F.J. Tackmann, Jet Veto Resummation with Jet Rapidity Cuts, JHEP 04 (2019) 142 [arXiv:1810.12911] [INSPIRE].
M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015) 189 [arXiv:1507.01652] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
T. Becher and M. Neubert, Drell-Yan Production at Small qT, Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
T. Becher, M. Neubert and D. Wilhelm, Higgs-Boson Production at Small Transverse Momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].
S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].
T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].
T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].
M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].
M.-X. Luo, X. Wang, X. Xu, L.L. Yang, T.-Z. Yang and H.X. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP 10 (2019) 083 [arXiv:1908.03831] [INSPIRE].
M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Gluon Case, JHEP 01 (2020) 040 [arXiv:1909.13820] [INSPIRE].
M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001 [arXiv:1912.05778] [INSPIRE].
M.A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N3LO, JHEP 09 (2020) 146 [arXiv:2006.05329] [INSPIRE].
M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs and FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].
C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs Production with a Central Jet Veto at NNLL + NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].
J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The Quark Beam Function at Two Loops, JHEP 04 (2014) 113 [arXiv:1401.5478] [INSPIRE].
J. Gaunt, M. Stahlhofen and F.J. Tackmann, The Gluon Beam Function at Two Loops, JHEP 08 (2014) 020 [arXiv:1405.1044] [INSPIRE].
K. Melnikov, R. Rietkerk, L. Tancredi and C. Wever, Double-real contribution to the quark beam function at N3LO QCD, JHEP 02 (2019) 159 [arXiv:1809.06300] [INSPIRE].
K. Melnikov, R. Rietkerk, L. Tancredi and C. Wever, Triple-real contribution to the quark beam function in QCD at next-to-next-to-next-to-leading order, JHEP 06 (2019) 033 [arXiv:1904.02433] [INSPIRE].
A. Behring, K. Melnikov, R. Rietkerk, L. Tancredi and C. Wever, Quark beam function at next-to-next-to-next-to-leading order in perturbative QCD in the generalized large-Nc approximation, Phys. Rev. D 100 (2019) 114034 [arXiv:1910.10059] [INSPIRE].
D. Baranowski, NNLO zero-jettiness beam and soft functions to higher orders in the dimensional-regularization parameter ϵ, Eur. Phys. J. C 80 (2020) 523 [arXiv:2004.03285] [INSPIRE].
M.A. Ebert, B. Mistlberger and G. Vita, N-jettiness beam functions at N3LO, JHEP 09 (2020) 143 [arXiv:2006.03056] [INSPIRE].
A. Jain, M. Procura and W.J. Waalewijn, Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative kT, JHEP 04 (2012) 132 [arXiv:1110.0839] [INSPIRE].
J.R. Gaunt and M. Stahlhofen, The Fully-Differential Quark Beam Function at NNLO, JHEP 12 (2014) 146 [arXiv:1409.8281] [INSPIRE].
J.R. Gaunt and M. Stahlhofen, The fully-differential gluon beam function at NNLO, JHEP 07 (2020) 234 [arXiv:2004.11915] [INSPIRE].
S. Gangal, J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, Two-Loop Beam and Soft Functions for Rapidity-Dependent Jet Vetoes, JHEP 02 (2017) 026 [arXiv:1608.01999] [INSPIRE].
G. Bell, A. Hornig, C. Lee and J. Talbert, e+e− angularity distributions at NNLL′ accuracy, JHEP 01 (2019) 147 [arXiv:1808.07867] [INSPIRE].
T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].
G. Bell, K. Brune, G. Das and M. Wald, Automation of Beam and Jet functions at NNLO, SciPost Phys. Proc. 7 (2022) 021 [arXiv:2110.04804] [INSPIRE].
G. Bell, K. Brune, G. Das and M. Wald, Automated calculation of beam functions at NNLO, in Loops and Legs in Quantum Field Theory, PoS(LL2022), Ettal Germany, April 25–30 2022 [DOI].
G. Bell, R. Rahn and J. Talbert, Two-loop anomalous dimensions of generic dijet soft functions, Nucl. Phys. B 936 (2018) 520 [arXiv:1805.12414] [INSPIRE].
G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: correlated emissions, JHEP 07 (2019) 101 [arXiv:1812.08690] [INSPIRE].
G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: uncorrelated emissions, JHEP 09 (2020) 015 [arXiv:2004.08396] [INSPIRE].
G. Bell, B. Dehnadi, T. Mohrmann and R. Rahn, Automated Calculation of N-jet Soft Functions, PoS LL2018 (2018) 044 [arXiv:1808.07427] [INSPIRE].
T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].
M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv:1407.3272] [INSPIRE].
D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].
Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
G.F.R. Sborlini, D. de Florian and G. Rodrigo, Double collinear splitting amplitudes at next-to-leading order, JHEP 01 (2014) 018 [arXiv:1310.6841] [INSPIRE].
J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].
S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].
S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].
Guido Bell, Kevin Brune, Goutam Das and Marcel Wald, Generic beam functions at two-loop order, in preparation.
S. Abreu, J.R. Gaunt, P.F. Monni, L. Rottoli and R. Szafron, Quark and gluon two-loop beam functions for leading-jet pT and slicing at NNLO, arXiv:2207.07037 [INSPIRE].
T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements, Nucl. Phys. B 971 (2021) 115542 [arXiv:2107.06267] [INSPIRE].
G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].
W. Furmanski and R. Petronzio, Singlet Parton Densities Beyond Leading Order, Phys. Lett. B 97 (1980) 437 [INSPIRE].
R.K. Ellis and W. Vogelsang, The Evolution of parton distributions beyond leading order: The Singlet case, hep-ph/9602356 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2207.05578
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bell, G., Brune, K., Das, G. et al. The NNLO quark beam function for jet-veto resummation. J. High Energ. Phys. 2023, 83 (2023). https://doi.org/10.1007/JHEP01(2023)083
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2023)083