Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The quark beam function at NNLL

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In hard collisions at a hadron collider the most appropriate description of the initial state depends on what is measured in the final state. Parton distribution functions (PDFs) evolved to the hard collision scale Q are appropriate for inclusive observables, but not for measurements with a specific number of hard jets, leptons, and photons. Here the incoming protons are probed and lose their identity to an incoming jet at a scale μ B Q, and the initial state is described by universal beam functions. We discuss the field-theoretic treatment of beam functions, and show that the beam function has the same RG evolution as the jet function to all orders in perturbation theory. In contrast to PDF evolution, the beam function evolution does not mix quarks and gluons and changes the virtuality of the colliding parton at fixed momentum fraction. At μ B , the incoming jet can be described perturbatively, and we give a detailed derivation of the one-loop matching of the quark beam function onto quark and gluon PDFs. We compute the associated NLO Wilson coefficients and explicitly verify the cancellation of IR singularities. As an application, we give an expression for the next-to-next-to-leading logarithmic order (NNLL) resummed Drell-Yan beam thrust cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [SPIRES].

    ADS  Google Scholar 

  2. V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].

    Google Scholar 

  3. H. Georgi and H.D. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev. D 9 (1974) 416 [SPIRES].

    ADS  Google Scholar 

  4. D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D 9 (1974) 980 [SPIRES].

    ADS  Google Scholar 

  5. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  6. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].

    ADS  Google Scholar 

  7. S.D. Ellis, A. Hornig, C. Lee, C.K. Vermilion and J.R. Walsh, Consistent Factorization of Jet Observables in Exclusive Multijet Cross-Sections, Phys. Lett. B 689 (2010) 82 [arXiv:0912.0262] [SPIRES].

    ADS  Google Scholar 

  8. T.T. Jouttenus, Jet Function with a Jet Algorithm in SCET, Phys. Rev. D 81 (2010) 094017 [arXiv:0912.5509] [SPIRES].

    ADS  Google Scholar 

  9. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, arXiv:1001.0014 [SPIRES].

  10. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [SPIRES].

    ADS  Google Scholar 

  11. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].

    ADS  Google Scholar 

  12. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [SPIRES].

    ADS  Google Scholar 

  13. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  14. J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys. B 308 (1988) 833 [SPIRES].

    Article  ADS  Google Scholar 

  15. S.M. Aybat and G.F. Sterman, Soft-Gluon Cancellation, Phases and Factorization with Initial-State Partons, Phys. Lett. B 671 (2009) 46 [arXiv:0811.0246] [SPIRES].

    ADS  Google Scholar 

  16. A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [SPIRES].

    ADS  Google Scholar 

  17. J.C. Collins and F. Hautmann, Infrared divergences and non-lightlike eikonal lines in Sudakov processes, Phys. Lett. B 472 (2000) 129 [hep-ph/9908467] [SPIRES].

    ADS  Google Scholar 

  18. C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: Factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [SPIRES].

    ADS  Google Scholar 

  19. A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017 [hep-ph/0702022] [SPIRES].

    ADS  Google Scholar 

  20. J. Chay and C. Kim, Collinear effective theory at subleading order and its application to heavy-light currents, Phys. Rev. D 65 (2002) 114016 [hep-ph/0201197] [SPIRES].

    ADS  Google Scholar 

  21. A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [SPIRES].

    ADS  Google Scholar 

  22. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].

    ADS  Google Scholar 

  23. J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [SPIRES].

    Article  ADS  Google Scholar 

  24. C. Balzereit, T. Mannel and W. Kilian, Evolution of the light-cone distribution function for a heavy quark, Phys. Rev. D 58 (1998) 114029 [hep-ph/9805297] [SPIRES].

    ADS  Google Scholar 

  25. M. Neubert, Renormalization-group improved calculation of the BX s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [SPIRES].

    Article  ADS  Google Scholar 

  26. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [SPIRES].

    ADS  Google Scholar 

  27. Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [SPIRES].

    ADS  Google Scholar 

  28. S. Fleming, A.K. Leibovich and T. Mehen, Resumming the color octet contribution to e + e J/ψ + X, Phys. Rev. D 68 (2003) 094011 [hep-ph/0306139] [SPIRES].

    ADS  Google Scholar 

  29. S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: The non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Moch, J.A.M. Vermaseren, and A. Vogt, The quark form factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].

    Article  ADS  Google Scholar 

  31. S. Fleming, A.K. Leibovich and T. Mehen, Resummation of Large Endpoint Corrections to Color-Octet JPhotoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [SPIRES].

    ADS  Google Scholar 

  32. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [SPIRES].

    Article  ADS  Google Scholar 

  33. D. Appell, G.F. Sterman and P.B. Mackenzie, Soft Gluons and the Normalization of the Drell-Yan Cross section, Nucl. Phys. B 309 (1988) 259 [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Catani, M.L. Mangano and P. Nason, Sudakov resummation for prompt photon production in hadron collisions, JHEP 07 (1998) 024 [hep-ph/9806484] [SPIRES].

    Article  ADS  Google Scholar 

  35. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [SPIRES].

    Article  ADS  Google Scholar 

  36. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Beam Thrust Cross section for Drell-Yan at NNLL Order, arXiv:1005.4060 [SPIRES].

  37. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J.Tackmann, and W.J. Waalewijn, Higgs Production with an Inclusive Jet Veto at NNLL+NNLO, MIT-CTP 4122, to appear.

  38. S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [SPIRES].

    ADS  Google Scholar 

  39. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [SPIRES].

    ADS  Google Scholar 

  40. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  41. I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].

    ADS  Google Scholar 

  42. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [SPIRES].

    Article  ADS  Google Scholar 

  43. M.D. Schwartz, Resummation and NLO Matching of Event Shapes with Effective Field Theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [SPIRES].

    ADS  Google Scholar 

  44. A.V. Manohar, Deep inelastic scattering as x → 1 using soft-collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [SPIRES].

    ADS  Google Scholar 

  45. C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [SPIRES].

    ADS  Google Scholar 

  46. O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [SPIRES].

    ADS  Google Scholar 

  47. S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [SPIRES].

    ADS  Google Scholar 

  48. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of Threshold Logarithms in Effective Field Theory For DIS, Drell-Yan and Higgs Production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [SPIRES].

    Article  ADS  Google Scholar 

  49. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep- inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Tackmann.

Additional information

ArXiv ePrint: 1002.2213

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, I.W., Tackmann, F.J. & Waalewijn, W.J. The quark beam function at NNLL. J. High Energ. Phys. 2010, 5 (2010). https://doi.org/10.1007/JHEP09(2010)005

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)005

Keywords