Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite-Time Stability and Stabilization of Fractional-Order Switched Singular Continuous-Time Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The finite-time stability and stabilization of a class of fractional-order switched singular continuous-time systems with order \(0<\alpha <1\) are investigated in this paper. First, by employing the average dwell time switching technique, together with the introduction of multiple Lyapunov functions, some sufficient conditions of the finite-time stability and finite-time boundedness are derived for the considered system. Second, based on the obtained conditions, suitable state feedback controllers can be designed if a set of linear matrix inequalities are feasible. Finally, an illustrative example is presented to show the effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  2. R.L. Bagley, R.A. Calico, Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 1(4), 304–311 (1989)

    Google Scholar 

  3. G.P. Chen, Y. Yang, Finite-time stability of switched positive linear systems. Int. J. Robust Nonlinear Control 24(1), 179–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.P. Clerc, A.M.S. Tremblay, G. Albinet, C. Mitescu, AC response of fractal networks. J. de Physique Lett. 45(19), 913–924 (1984)

    Article  Google Scholar 

  5. H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems. Nonlinear Dyn. 67(4), 2433–2439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Ding, Q.L. Han, X.M. Zhang, Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Ind. Inform. to be published. https://doi.org/10.1109/TII.2018.2884494

  7. X. Gao, J.B. Yu, Synchronization of two coupled fractional-order chaotic oscillators. Chaos Solitons Fract. 26(1), 141–145 (2005)

    Article  MATH  Google Scholar 

  8. L. Gaul, P. Klein, S. Kemple, Damping description involving fractional operators. Mech. Syst. Signal Process. 5(2), 81–88 (1991)

    Article  Google Scholar 

  9. X. Ge, Q.L. Han, X.M. Zhang, Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Ind. Electron. 65(4), 3417–3426 (2018)

    Article  Google Scholar 

  10. M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. 33(2), 253–265 (1971)

    Article  Google Scholar 

  11. T. Kaczorek, Singular fractional linear systems and electrical circuits. Int. J. Appl. Math. Comput. Sci. 21(2), 379–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kaczorek, Stability of positive fractional switched continuous-time linear systems. B. Pol. Acad. Sci-Tech. 61(2), 349–352 (2013)

    Google Scholar 

  13. S.T. Li, X.M. Liu, Y.Y. Tan, Optimal switching time control of discrete-time switched autonomous systems. Int. J. Innov. Comput. I. 11(6), 2043–2050 (2015)

    Google Scholar 

  14. Y. Li, Y.Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Lin, B. Chen, P. Shi, J.P. Yu, Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Syst. Control Lett. 112, 31–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Liu, X. Wu, X.F. Zhou, Asymptotical stability of Riemann–Liouville fractional nonlinear systems. Nonlinear Dyn. 86(1), 65–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.G. Lu, Y.Q. Chen, Robust stability and stabilization of fractional-order interval systems with the fractional order \(0<\alpha <1\) case. IEEE Trans. Autom. Control 55(1), 152–158 (2015)

    MathSciNet  Google Scholar 

  18. Y.J. Ma, B.W. Wu, Y.E. Wang, Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing 173(3), 2076–2082 (2016)

    Article  Google Scholar 

  19. S. Marir, M. Chadli, D. Bouagada, New admissibility conditions for singular linear continuous-time fractional-order systems. J. Frankl. Inst. 354, 752–766 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. E.T. McAdams, A. Lackermeier, J.A. McLaughlin, D. Macken, J. Jossinet, The linear and non-linear electrical properties of the electrode–electrolyte interface. Biosens. Bioelectron. 10(1), 67–74 (1995)

    Article  Google Scholar 

  21. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D.Y. Xue, V. Feliu, Fractional-Order Systems and Controls (Springer, London, 2010)

    Book  MATH  Google Scholar 

  22. I. N’Doye, M. Darouach, M. Zasadzinski, Robust stabilization of uncertain descriptor fractional-order systems. Automatica 49(6), 1907–1913 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Podlubny, Fractional differential equations. Int. J. Differ. Equ. 3, 553–563 (2010)

    Google Scholar 

  24. W.H. Qi, G.D. Zong, J. Cheng, T.C. Jiao, Robust finite-time stabilization for positive delayed semi-Markovian switching systems. Appl. Math. Comput. 351, 139–152 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y.H. Wei, J.C. Wang, T.Y. Liu, Y. Wang, Fixed pole based modeling and simulation schemes for fractional order systems. ISA Trans. 84, 43–54 (2019)

    Article  Google Scholar 

  26. Y.H. Wei, J.C. Wang, T.Y. Liu, Y. Wang, Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state. J. Frankl. Inst. 356(4), 1975–1990 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. T.B. Wu, F.B. Li, C.H. Yang, W.H. Gui, Event-based fault detection filtering for complex networked jump systems. IEEE-ASME T. Mech. 23(2), 497–505 (2018)

    Article  Google Scholar 

  28. Y. Yang, G.P. Chen, Finite-time stability of fractional order impulsive switched systems. Int. J. Robust Nonlinear Control 25, 2207–2222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.F. Zhang, X.D. Zhao, Y. Chen, Finite-time stability and stabilization of fractional order positive switched systems. Circuits Syst. Signal Process. 35(7), 2450–2470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Zhang, P. Shi, L. Ma, Cai J, Su H, Network-based fuzzy control for nonlinear Markov jump systems subject to quantization and dropout compensation. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.09.007

  31. M. Zhang, P. Shi, L. Ma, Cai J, Su H, Quantized feedback control of fuzzy Markov jump systems. IEEE Trans. Cybern. 49(9), 3375–3384 (2018)

    Article  Google Scholar 

  32. X.F. Zhang, Y.Q. Chen, Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order \(\alpha \): The \(0<\alpha <1\) case. ISA Trans. 82, 42–50 (2018)

    Article  Google Scholar 

  33. X.M. Zhang, Q.L. Han, Network-based \(H_\infty \) filtering using a logic jumping-like trigger. Automatica 49(5), 1428–1435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. X.M. Zhang, Q.L. Han, J. Wang, Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5319–5329 (2018)

    Article  MathSciNet  Google Scholar 

  35. X.M. Zhang, Q.L. Han, A. Seuret, F. Gouaisbaut, Y. He, Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory Appl. 13(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  36. Y.L. Zhang, B.W. Wu, Y.E. Wang, Finite-time stability for switched singular systems. Acta Phys. Sinica. 63(17), 32–41 (2014)

    Google Scholar 

  37. L. Zhou, L. Cheng, J. She, Z. Zhang, Generalized extended state observer-based repetitive control for systems with mismatched disturbances. Int. J. Robust Nonlinear Control (to be published). https://doi.org/10.1002/rnc.4582

  38. L. Zhou, D.W.C. Ho, G. Zhai, Stability analysis of switched linear singular systems. Automatica 49(5), 1481–1487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Zhou, J. She, S. Zhou, Robust \(H_\infty \) control of an observer-based repetitive-control system. J. Frankl. Inst. 355(12), 4952–4969 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Zhou, J. She, S. Zhou, C. Li, Compensation for state-dependent nonlinearity in a modified repetitive-control system. Int. J. Robust Nonlinear Control 28(1), 213–226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Zuo, Q.L. Han, B. Ning, X. Ge, X.M. Zhang, An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Ind. Inform. 14(6), 2322–2334 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61403241), by the Fundamental Research Funds for the Central Universities (Nos. GK201703009, GK201903004, GK201905001) and also by the China Scholarship Council (No. 201806870032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Wu, B., Liu, L. et al. Finite-Time Stability and Stabilization of Fractional-Order Switched Singular Continuous-Time Systems. Circuits Syst Signal Process 38, 5528–5548 (2019). https://doi.org/10.1007/s00034-019-01159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01159-1

Keywords