Abstract
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that there exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at least \(i+1\). Let \(S^n\) be the base-3 Sierpiński graph of dimension n. It is proved that \(\chi _{\rho }(S^1) = 3\), \(\chi _{\rho }(S^2) = 5\), \(\chi _{\rho }(S^3) = \chi _{\rho }(S^4) = 7\), and that \(8\le \chi _\rho (S^n) \le 9\) holds for any \(n\ge 5\).
Similar content being viewed by others
References
Argiroffo, G., Nasini, G., Torres, P.: The packing coloring problem for \((q, q-4)\) graphs. Lect. Notes Comp. Sci. 7422, 309–319 (2012)
Argiroffo, G., Nasini, G., Torres, P.: The packing coloring problem for lobsters and partner limited graphs. Discret. Appl. Math. 164, 373–382 (2014)
Brešar, B., Klavžar, S., Rall, D.F.: On the packing chromatic number of Cartesian products, hexagonal lattice, and trees. Discret. Appl. Math. 155, 2303–2311 (2007)
Dorbec, P., Klavžar, S.: Generalized power domination: propagation radius and Sierpiński graphs. Acta Appl. Math. 134, 75–86 (2014)
Ekstein, J., Fiala, J., Holub, P., Lidický, B.: The packing chromatic number of the square lattice is at least 12. arXiv:1003.2291v1. Submitted on 11 Mar 2010
Ekstein, J., Holub, P., Lidický, B.: Packing chromatic number of distance graphs. Discret. Appl. Math. 160, 518–524 (2012)
Ekstein, J., Holub, P., Togni, O.: The packing coloring of distance graphs \(D(k, t)\). Discret. Appl. Math. 167, 100–106 (2014)
Fiala, J., Golovach, P.A.: Complexity of the packing coloring problem for trees. Discret. Appl. Math. 158, 771–7789 (2010)
Fiala, J., Klavžar, S., Lidický, B.: The packing chromatic number of infinite product graphs. Eur. J. Combin. 30, 1101–1113 (2009)
Finbow, A.S., Rall, D.F.: On the packing chromatic number of some lattices. Discret. Appl. Math. 158, 1224–1228 (2010)
Fu, H.-Y., Xie, D.: Equitable \(L(2,1)\)-labelings of Sierpiński graphs. Australas. J. Combin. 46, 147–156 (2010)
Gastineau, N.: Dichotomies properties on computational complexity of S-packing coloring problems. Discret. Math. 338, 1029–1041 (2015)
Gastineau, N., Holub, P., Togni, O.: Packing chromatic number in outerplanar graphs with maximum degree \(3\), abstract. In: Fifth International Conference on Combinatorics, Graph Theory and Applications, Elgersburg Technische Universität Ilmenau, March 16–20, 2015
Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Harris, J.M., Rall, D.F.: Broadcast chromatic numbers of graphs. Ars Combin. 86, 33–49 (2008)
Goddard, W., Xu, H.: The S-packing chromatic number of a graph. Discuss. Math. Graph Theory 34, 795–806 (2012)
Gravier, S., Kovše, M., Mollard, M., Moncel, J., Parreau, A.: New results on variants of covering codes in Sierpiński graphs. Des. Codes Cryptogr. 69, 181–188 (2013)
Hinz, A.M., Heide, C.Holz auf der: An efficient algorithm to determine all shortest paths in Sierpiński graphs. Discret. Appl. Math. 177, 111–120 (2014)
Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi-Myths and Maths. Birkhäuser/Springer, Basel (2013)
Hinz, A.M., Parisse, D.: The average eccentricity of Sierpiński graphs. Graphs Combin. 28, 671–686 (2012)
Jacobs, Y., Jonck, E., Joubert, E.J.: A lower bound for the packing chromatic number of the Cartesian product of cycles. Cent. Eur. J. Math. 11, 1344–1357 (2013)
Klavžar, S., Milutinović, U.: Graphs \(S(n, k)\) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 47(122), 95–104 (1997)
Korže, D., Vesel, A.: On the packing chromatic number of square and hexagonal lattice. Ars Math. Contemp. 7, 13–22 (2014)
Lin, C.-H., Liu, J.-J., Wang, Y.-L.: Global strong defensive alliances of Sierpiński-like graphs. Theory Comput. Syst. 53, 365–385 (2013)
Lipscomb, S.: Fractals and Universal Spaces in Dimension Theory. Springer, Berlin (2009)
Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discret. Math. 20, 610–622 (2006)
Shao, Z., Vesel, A.: Modeling the packing coloring problem of graphs. Appl. Math. Model. 39, 3588–3595 (2015)
Soukal, R., Holub, P.: A note on packing chromatic number of the square lattice. Electron. J. Combin. 17, (2010)
Togni, O.: On packing colorings of distance graphs. Discret. Appl. Math. 167, 280–289 (2014)
Torres, P., Valencia-Pabon, M.: The packing chromatic number of hypercubes. Discret. Appl. Math. 190–191, 127–140 (2015)
Xue, B., Zuo, L., Wang, G., Li, G.: The linear \(t\)-colorings of Sierpiński-like graphs. Graphs Combin. 30, 755–767 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
B.B. and S.K. supported in part by the Slovenian research agency (ARRS) under the Grant P1-0297. D.F.R. supported by a grant from the Simons Foundation (Grant Number 209654 to Douglas F. Rall).
Rights and permissions
About this article
Cite this article
Brešar, B., Klavžar, S. & Rall, D.F. Packing Chromatic Number of Base-3 Sierpiński Graphs. Graphs and Combinatorics 32, 1313–1327 (2016). https://doi.org/10.1007/s00373-015-1647-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-015-1647-x