Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Packing Chromatic Number of Base-3 Sierpiński Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that there exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at least \(i+1\). Let \(S^n\) be the base-3 Sierpiński graph of dimension n. It is proved that \(\chi _{\rho }(S^1) = 3\), \(\chi _{\rho }(S^2) = 5\), \(\chi _{\rho }(S^3) = \chi _{\rho }(S^4) = 7\), and that \(8\le \chi _\rho (S^n) \le 9\) holds for any \(n\ge 5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Argiroffo, G., Nasini, G., Torres, P.: The packing coloring problem for \((q, q-4)\) graphs. Lect. Notes Comp. Sci. 7422, 309–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argiroffo, G., Nasini, G., Torres, P.: The packing coloring problem for lobsters and partner limited graphs. Discret. Appl. Math. 164, 373–382 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brešar, B., Klavžar, S., Rall, D.F.: On the packing chromatic number of Cartesian products, hexagonal lattice, and trees. Discret. Appl. Math. 155, 2303–2311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorbec, P., Klavžar, S.: Generalized power domination: propagation radius and Sierpiński graphs. Acta Appl. Math. 134, 75–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ekstein, J., Fiala, J., Holub, P., Lidický, B.: The packing chromatic number of the square lattice is at least 12. arXiv:1003.2291v1. Submitted on 11 Mar 2010

  6. Ekstein, J., Holub, P., Lidický, B.: Packing chromatic number of distance graphs. Discret. Appl. Math. 160, 518–524 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekstein, J., Holub, P., Togni, O.: The packing coloring of distance graphs \(D(k, t)\). Discret. Appl. Math. 167, 100–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiala, J., Golovach, P.A.: Complexity of the packing coloring problem for trees. Discret. Appl. Math. 158, 771–7789 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiala, J., Klavžar, S., Lidický, B.: The packing chromatic number of infinite product graphs. Eur. J. Combin. 30, 1101–1113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Finbow, A.S., Rall, D.F.: On the packing chromatic number of some lattices. Discret. Appl. Math. 158, 1224–1228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, H.-Y., Xie, D.: Equitable \(L(2,1)\)-labelings of Sierpiński graphs. Australas. J. Combin. 46, 147–156 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Gastineau, N.: Dichotomies properties on computational complexity of S-packing coloring problems. Discret. Math. 338, 1029–1041 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gastineau, N., Holub, P., Togni, O.: Packing chromatic number in outerplanar graphs with maximum degree \(3\), abstract. In: Fifth International Conference on Combinatorics, Graph Theory and Applications, Elgersburg Technische Universität Ilmenau, March 16–20, 2015

  14. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Harris, J.M., Rall, D.F.: Broadcast chromatic numbers of graphs. Ars Combin. 86, 33–49 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Goddard, W., Xu, H.: The S-packing chromatic number of a graph. Discuss. Math. Graph Theory 34, 795–806 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gravier, S., Kovše, M., Mollard, M., Moncel, J., Parreau, A.: New results on variants of covering codes in Sierpiński graphs. Des. Codes Cryptogr. 69, 181–188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hinz, A.M., Heide, C.Holz auf der: An efficient algorithm to determine all shortest paths in Sierpiński graphs. Discret. Appl. Math. 177, 111–120 (2014)

    Article  MATH  Google Scholar 

  18. Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi-Myths and Maths. Birkhäuser/Springer, Basel (2013)

    Book  MATH  Google Scholar 

  19. Hinz, A.M., Parisse, D.: The average eccentricity of Sierpiński graphs. Graphs Combin. 28, 671–686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacobs, Y., Jonck, E., Joubert, E.J.: A lower bound for the packing chromatic number of the Cartesian product of cycles. Cent. Eur. J. Math. 11, 1344–1357 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Klavžar, S., Milutinović, U.: Graphs \(S(n, k)\) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 47(122), 95–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Korže, D., Vesel, A.: On the packing chromatic number of square and hexagonal lattice. Ars Math. Contemp. 7, 13–22 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Lin, C.-H., Liu, J.-J., Wang, Y.-L.: Global strong defensive alliances of Sierpiński-like graphs. Theory Comput. Syst. 53, 365–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lipscomb, S.: Fractals and Universal Spaces in Dimension Theory. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  25. Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discret. Math. 20, 610–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shao, Z., Vesel, A.: Modeling the packing coloring problem of graphs. Appl. Math. Model. 39, 3588–3595 (2015)

    Article  MathSciNet  Google Scholar 

  27. Soukal, R., Holub, P.: A note on packing chromatic number of the square lattice. Electron. J. Combin. 17, (2010)

  28. Togni, O.: On packing colorings of distance graphs. Discret. Appl. Math. 167, 280–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Torres, P., Valencia-Pabon, M.: The packing chromatic number of hypercubes. Discret. Appl. Math. 190–191, 127–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xue, B., Zuo, L., Wang, G., Li, G.: The linear \(t\)-colorings of Sierpiński-like graphs. Graphs Combin. 30, 755–767 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boštjan Brešar.

Additional information

B.B. and S.K. supported in part by the Slovenian research agency (ARRS) under the Grant P1-0297. D.F.R. supported by a grant from the Simons Foundation (Grant Number 209654 to Douglas F. Rall).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brešar, B., Klavžar, S. & Rall, D.F. Packing Chromatic Number of Base-3 Sierpiński Graphs. Graphs and Combinatorics 32, 1313–1327 (2016). https://doi.org/10.1007/s00373-015-1647-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1647-x

Keywords

Mathematics Subject Classification