Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heuristic computational intelligence approach to solve nonlinear multiple singularity problem of sixth Painlev́e equation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present study investigate the numerical solution of nonlinear singular system represented with sixth Painlev́e equation by the strength of artificial intelligence using feed-forward artificial neural networks (ANNs) optimized with genetic algorithms (GAs), interior point technique (IPT), sequential quadratic programming (SQP), and their hybrids. The ANN provided a compatible method for finding nature-inspired mathematical model based on unsupervised error for sixth Painlev́e equation and adaptation of weights of these networks is carried out globally by the competency of GA aided with IPT or SQP algorithms. Moreover, a hybrid approach has been adopted for better proposed numerical results. An extensive statistical analysis has been performed through several independent runs of algorithms to validate the accuracy, convergence, and exactness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Painlev P (1902) Sur les quations diffrentielles du second ordre et d’ordre sup rieure dont l’intgrale gnrale est uniforme. Acta Math 25:185

    Article  MathSciNet  Google Scholar 

  2. Gambier B (1910) Sur les quations diffrentielles du second ordre et du premier degr dont l’intgrale gnrale est points critiques fixes. Acta Math 33:155

    Article  Google Scholar 

  3. Picard E (1887) Sur une classe d’équations diffrentielles. CR Acad Sci Paris 104:41–43

    MATH  Google Scholar 

  4. Ince EL (1956) Ordinary differential equations. Dover, New York

  5. Ablowitz MJ, Clarkson PA (1997) Solitons, nonlinear evolution equations and inverse scattering, vol 149

  6. Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering trans-form. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  7. Its AR, Novokshenov VY (1986) The isomonodromic deformation method in the theory of Painleve equations, vol 1191

  8. Lukashevich NA (1967) Theory of the fourth Painleve equation. Diff Equat 3:395–399

    MATH  Google Scholar 

  9. Lukashevich NA (1968) Solution of fifth equation of Painleve. Diff Urav 4:732–735

    MATH  Google Scholar 

  10. Lukashevich NA, Yablonskii AI (1967) On a class of solutions of the sixth Painleve equations. Diff Urav 3:264

    MathSciNet  Google Scholar 

  11. Fokas AS, Ablowitz MJ (1982) On a unified approach to transformations and elementary solutions of Painlev equations. J Math Phy 23:2033–2042

    Article  MATH  Google Scholar 

  12. Gromak VI, Laine I, Shimomura S (2002) Painleve differential equations in the complex plane. Walter de Gruyter, Berlin, New York

  13. Okamoto K, Conte R (1999) The Painleve property, one century later

  14. Okamoto K (1986) Studies on Painleve equation III, second and fourth Painleve equation, PII and PIV. Math Ann 275:221–255

    Article  MathSciNet  MATH  Google Scholar 

  15. Painleve P (1900) Memoire sur les equations differentielles dont 1’integrale generale est uniforme. Bull Soc Math Fr 28:201– 261

    Article  MATH  Google Scholar 

  16. Painleve P (1902) Memoire Sur les equations differentielles du second ordre et d’ordre superieur dont 1’integrale generale est uniforme. Acta Math 25:1–85

    Article  MathSciNet  MATH  Google Scholar 

  17. Gambier B (1910) Sur les equations differentielles du second ordre et du premier degre dont 1’integrale generale est a points critiques fixes. Acta Math 33:1–55

    Article  MathSciNet  MATH  Google Scholar 

  18. Chazy J (1911) Sur les equations differentielles du troisieme ordre et d’ordre suprieur dont 1’intgrale generale a ses points critiques fixes. Acta Math 34:317–385

    Article  MathSciNet  MATH  Google Scholar 

  19. Garnier R (1912) Sur des equations differentielles du troisieme ordre dont l’integrale generale est uniforme et sur une classe d’equations nouvelles d’ordre superieur. Ann Sci Ecole Normale Sup 48:1–126

    MATH  Google Scholar 

  20. Exton H (1973) Non-linear ordinary differential equations with fixed critical points. Rend Mat (6):419–462

  21. Martynov IP (1985) Analytic properties of solutions of a third-order differential equation. Differents Uravn 21:764–771

    MathSciNet  Google Scholar 

  22. Martynov IP (1985) Third-order equations without moving critical singularities. Differents Uravn 21:937–946

    MathSciNet  Google Scholar 

  23. Bureau FJ (1964) Differential equations with fixed critical points. Ann Mat Pura Appl (IV) 66:1–116

    Article  MathSciNet  MATH  Google Scholar 

  24. Ablowitz MJ, Segur H (1977) Exact linearization of a Painleve transcendent. Phys Rev Lett 38:1103–1106

    Article  MathSciNet  Google Scholar 

  25. Ablowitz MJ, Ramani A, Segur H (1980) A connection between nonlinear evolution equations and ordinary differential equations of P-type. I. J Math Phys 21:715–721

    Article  MathSciNet  MATH  Google Scholar 

  26. Airault H (1979) Rational solutions of Painleve equations. Stud Appl Math 61:31–53

    Article  MathSciNet  MATH  Google Scholar 

  27. Kudryashov NA (1997) The first and second Painleve equations of higher order and some relations between them. Phys Lett A 224:353–360

    Article  MathSciNet  MATH  Google Scholar 

  28. Gordoa PR, Pickering A (1999) Non-isospectral scattering problems: a key to integrable hierarchies. J Math Phys 40:5749–5786

    Article  MathSciNet  MATH  Google Scholar 

  29. Gordoa PR, Pickering A (2000) On a new non-isospectral variant of the Boussinesq hierarchy. J Phys A 33:557–567

    Article  MathSciNet  MATH  Google Scholar 

  30. Gordoa PR, Joshi N, Pickering A (2001) On a generalized 2 + 1 dispersive water wave hierarchy. Publ Res Inst Math Sci (Kyoto) 37:327–347

    Article  MathSciNet  MATH  Google Scholar 

  31. Pickering A (2002) Coalescence limits for higher order Painleve equations. Phys Lett A 301:275–280

    Article  MathSciNet  MATH  Google Scholar 

  32. Kawai T, Koike T, Nishikawa Y, Takei Y (2004) On the stokes geometry of higher order Painleve equations, Analyse complexe, systemes dynamiques, sommabilite des series divergentes et theories galoisiennes. II. Astrisque No 297:117–166

    Google Scholar 

  33. Gordoa PR, Joshi N, Pickering A (2006) Second and fourth Painlev hierarchies and Jimbo-Miwa linear problems. J Math Phys 47:073504

    Article  MathSciNet  MATH  Google Scholar 

  34. Koike T (2007) On the Hamiltonian structures of the second and the fourth Painlev hierarchies, and the degenerate Garnier systems, algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlev hierarchies. RIMS Kkyroku Bessatsu, B2, Res Inst Math Sci (RIMS), Kyoto pp 99–127

  35. Sakka AH (2009) On special solutions of second and fourth Painleve hierarchies. Phys Lett A 373:611–615

    Article  MathSciNet  MATH  Google Scholar 

  36. Mugan U, Jrad F (1999) Painleve test and the first Painleve hierarchy. J Phys A 32:7933–7952

    Article  MathSciNet  MATH  Google Scholar 

  37. Mugan U, Jrad F (2002) Painleve test and higher order differential equations. J Nonlinear Math Phys 9:282–310

    Article  MathSciNet  MATH  Google Scholar 

  38. Mugan U, Jrad F (2004) Non-polynomial third order equations which pass the Painleve test. Z Naturforsch A 59:163–180

    Article  Google Scholar 

  39. Cosgrove CM (2000) Higher-order Painleve equations in the polynomial class. I. Bureau symbol P2. Stud Appl Math 104:1–65

    Article  MathSciNet  MATH  Google Scholar 

  40. Cosgrove CM (2006) Higher-order Painleve equations in the polynomial class. II. Bureau symbol P1. Stud Appl Math 116:321– 413

    Article  MathSciNet  MATH  Google Scholar 

  41. Dai D, Zhang L (2010) On tronque solutions of the first Painlev hierarchy. J Math Anal Appl 368:393–399

    Article  MathSciNet  Google Scholar 

  42. Lebeau G, Lochak P (1987) On the second painleve equation: the connection formula via a Riemann-Hilbert problem and other results. Journal of Uiffekential Equations 68:344–372

    Article  MathSciNet  MATH  Google Scholar 

  43. Kajiwara K (2003) On a q-difference Painleve III equation: II. rational solutions. J Nonlinear Math Phys 10 (3):282–303

    Article  MathSciNet  MATH  Google Scholar 

  44. Yoshikatsu S (2007) Value distribution of the fifth Painlev transcendentsin sectorial domains. J Math Anal 330:817–828

    Article  MathSciNet  MATH  Google Scholar 

  45. Contea R, Musetteb M (2002) New contiguity relation of the sixth Painlev equation from a truncation. A Physica D 161:129– 141

    Article  Google Scholar 

  46. Ahmad I, Raja MAZ, Bilal M, Ashraf F (2016) Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput and Applic 1–16. doi:10.1007/s00521-016-2400-y

  47. Ahmad I, Mukhtar A (2015) Stochastic approach for the solution of multi-pantograph differential equation arising in cell-growth model, Appl. Math Comput 261:360

    MathSciNet  MATH  Google Scholar 

  48. Ahmad I, Ahmad S, Bilal M, Anwar N (2016) Stochastic numerical treatment for solving Falkner-Skan equations using feed forward neural networks. Neural Comput and Applic 1–14. doi:10.1007/s00521-016-2427-0

  49. He JH (1999) Homotopy perturbation technique. Comput Math Appl Mech Engy pp 178–257

  50. Abu Arqub O (2016) Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundamenta Informaticae 146:231–254

    Article  MathSciNet  MATH  Google Scholar 

  51. Abu Arqub O, Maayah B (2016) Solutions of Bagley-Torvik and Painlev equations of fractional order using iterative reproducing kernel algorithm. Neural Comput and Applic. doi:10.1007/s00521-016-2484-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Ethics declarations

Conflict of interests

There is no conflict of interest among all the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Rehman, A., Ahmad, F. et al. Heuristic computational intelligence approach to solve nonlinear multiple singularity problem of sixth Painlev́e equation. Neural Comput & Applic 31, 101–115 (2019). https://doi.org/10.1007/s00521-017-2982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2982-z

Keywords