Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two-geodesic-transitive graphs of odd order

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We study (G, 2)-geodesic-transitive graphs of odd order. We first give a reduction result on this family of graphs: Let N be an intransitive normal subgroup of G. Suppose that such a graph \(\Gamma \) is neither (G, 2)-arc-transitive nor \(\textrm{K}_{m[b]}\) where mb is odd and \(m,b\ge 3\). Then, we show that \(\Gamma \) is a cover of \(\Gamma _N\), G/N is faithful and quasiprimitive on \(V(\Gamma _N)\), \(\Gamma _N\) is \((G/N,s')\)-geodesic-transitive of odd order and girth 3 where \(s'=\min \{2,\textrm{diam}(\Gamma _N)\}\). We next investigate odd order (G, 2)-geodesic-transitive graphs where G acts quasiprimitively on the vertex set and determine all the possible quasiprimitive action types and give examples for them, and we also classify the family of (G, 2)-geodesic-transitive graphs of odd order where G is primitive of product action type on the vertex set. Finally, we find all the odd order 3-geodesic-transitive graphs which are covers of complete graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analysed in this study.

References

  1. Alspach, B., Conder, M., Marušič, D., Xu, M. Y.: A classification of 2-arc transitive circulants. J. Algebraic Combin. 5, 83–86 (1996)

  2. Biggs, N.L.: Algebraic Graph Theory. Cambridge University Press, New York (1974)

    Book  MATH  Google Scholar 

  3. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer Verlag, Berlin, Heidelberg, New York (1989)

    Book  MATH  Google Scholar 

  4. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  5. Devillers, A., Giudici, M., Li, C.H., Praeger, C.E.: Locally s-distance transitive graphs. J. Graph Theory 69(2), 176–197 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: Line graphs and geodesic transitivity. Ars Math. Contemp. 6, 13–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Devillers, A., Jin, W., Li, C.H., Praeger, C.E.: Local \(2\)-geodesic transitivity and clique graphs. J. Combin. Theory Ser. A 120, 500–508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996)

    Book  MATH  Google Scholar 

  9. Du, S.F., Wang, R.J., Xu, M.Y.: On the normality of Cayley digraphs of order twice a prime. Australas. J. Combin. 18, 227–234 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243–256 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Godsil, C.D., Liebler, R.A., Praeger, C.E.: Antipodal distance transitive covers of complete graphs. Eur. J. Combin. 19, 455–478 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, J. J., Feng, Y. Q., Zhou, J. X.: Two-geodesic transitive graphs of order \(p^n\) with \(n\le 3\), https://arxiv.org/abs/2207.10919v2

  13. Ivanov, A.A., Praeger, C.E.: On finite affine 2-arc transitive graphs. Eur. J. Combin. 14, 421–444 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, W., Devillers, A., Li, C.H., Praeger, C.E.: On geodesic transitive graphs. Discrete Math. 338, 168–173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C.H.: On finite \(s\)-transitive graphs of odd order. J. Combin. Theory Ser. B 81, 307–317 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C.H., Li, J.J., Lu, Z.P.: Two-arc-transitive graphs of odd order - II. Eur. J. Combin. 96, 103354 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C.H., Li, J.J., Lu, Z.P.: Two-arc-transitive graphs of odd order—I. J. Algebraic Combin. (2023). https://doi.org/10.1007/s10801-023-01224-8

  18. Liebeck, M.W., Praeger, C.E., Saxl, J.: On the O’Nan–Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc. Ser. A 44, 389–396 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liebeck, M.W., Saxl, J.: The primitive permutation groups of odd degree. J. London Math. Soc. 31(2), 250–264 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, Z.P., Xu, M.Y.: On the normality of Cayley graphs of order \(pq\). Australas. J. Combin. 27, 81–93 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Praeger, C.E.: An O’Nan Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. London Math. Soc. 47, 227–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Praeger, C. E.: Finite transitive permutation groups and finite vertex-transitive graphs, graph symmetry: algebraic methods and applications. NATO Adv. Sci. Inst. Ser.C Math. Phys. Sci. 497, 277–318 (1997)

  23. Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Austral. Math. Soc. 60, 207–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tutte, W.T.: A family of cubical graphs. Proc. Cambridge Philos. Soc. 43, 459–474 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tutte, W.T.: On the symmetry of cubic graphs. Canad. J. Math. 11, 621–624 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weiss, R.: The non-existence of 8-transitive graphs. Combinatorica 1, 309–311 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)

    MATH  Google Scholar 

  28. Xu, M.Y.: Automorphism groups and isomorphisms of Cayley graphs. Discrete Math. 182, 309–319 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project is supported by the NNSF of China (12271524,12061034), NSF of Jiangxi (20224ACB201002, 20212BAB201010) and NSF of Hunan (2022JJ30674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W. Two-geodesic-transitive graphs of odd order. J Algebr Comb 58, 291–305 (2023). https://doi.org/10.1007/s10801-023-01253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-023-01253-3

Keywords

Mathematics Subject Classification