Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Right-censored models by the expectile method

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Based on the expectile loss function and the adaptive LASSO penalty, the paper proposes and studies the estimation methods for the accelerated failure time (AFT) model. In this approach, we need to estimate the survival function of the censoring variable by the Kaplan–Meier estimator. The AFT model parameters are first estimated by the expectile method and afterwards, when the number of explanatory variables can be large, by the adaptive LASSO expectile method which directly carries out the automatic selection of variables. We also obtain the convergence rate and asymptotic normality for the two estimators, while showing the sparsity property for the censored adaptive LASSO expectile estimator. A numerical study using Monte Carlo simulations confirms the theoretical results and demonstrates the competitive performance of the two proposed estimators. The usefulness of these estimators is illustrated by applying them to three survival data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cai T, Huang J, Tian L (2009) Regularized estimation for the accelerated failure time model. Biometrics 65(2):394–404

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YQ, Jewell NP, Lei X, Cheng SC (2005) Semiparametric estimation of proportional mean residual life model in presence of censoring. Biometrics 61(1):170–178

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng C, Feng X, Huang J, Jiao Y, Zhang S (2022) \(\ell _0\)-regularized high-dimensional accelerated failure time model. Comput Stat Data Anal 170:107430

    Article  MATH  Google Scholar 

  • Chung M, Long Q, Johnson BA (2013) A tutorial on rank-based coefficient estimation for censored data in small- and large-scale problems. Stat Comput 23(5):601–614

    Article  MathSciNet  MATH  Google Scholar 

  • Ciuperca G (2021) Variable selection in high-dimensional linear model with possibly asymmetric errors. Comput Stat Data Anal 155:107112

    Article  MathSciNet  MATH  Google Scholar 

  • De Backer M, El Ghouch A, Van Keilegom I (2019) At adapted loss function for censored quantile regression. J Am Stat Assoc 114(527):1126–1137

    Article  MATH  Google Scholar 

  • Fleming TR, Harrington DP (1984) Nonparametric estimation of the survival distribution in censored data. Comm Stat A-Theory Methods 13(20):2469–2486

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. John Wiley & Sons, Inc., New York

  • Gu Y, Zou H (2016) High-dimensional generalizations of asymmetric least squares regression and their applications. Ann Stat 44(6):2661–2694

    Article  MathSciNet  MATH  Google Scholar 

  • Huang J, Ma S (2010) Variable selection in the accelerated failure time model via the bridge method. Lifetime Data Anal 16(2):176–195

    Article  MathSciNet  MATH  Google Scholar 

  • He D, Zhou Y, Zou H (2020) High-dimensional variable selection with right-censored length-biased data. Stat Sinica 30(1):193–215

    MathSciNet  MATH  Google Scholar 

  • Huang J, Ma S, Xie H (2007) Least absolute deviations estimation for the accelerated failure time model. Stat Sinica 17(4):1533–1548

    MathSciNet  MATH  Google Scholar 

  • He K, Wang Y, Zhou X, Xu H, Huang C (2019) An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis. Lifetime Data Anal 25(3):569–585

    Article  MathSciNet  MATH  Google Scholar 

  • Hu J, Chai H (2013) Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates. J Multivariate Anal 122:96–114

    Article  MathSciNet  MATH  Google Scholar 

  • Huang L, Kopciuk K, Lu X (2020) Adaptive group bridge selection in the semiparametric accelerated failure time model. J Multivariate Anal 175:104562

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter DR, Li R (2005) Variable selection using MM algorithms. Ann Stat 33(4):1642–1717

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang R, Hu X, Yu K, Qian W (2018) Composite quantile regression for massive datasets. Statistics 52(5):980–1004

    Article  MathSciNet  MATH  Google Scholar 

  • Jin Z, Lin DY, Ying Z (2006) On least-squares regression with censored data. Biometrika 93(1):147–161

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson BA (2009) On lasso for censored data. Electron J Stat 3:485–506

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ

  • Lee ER, Park S, Lee SK, Hong HG (2023) Quantile forward regression for high-dimensional survival data. Lifetime Data Anal 29(4):769–806

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Gu M (2012) Adaptive LASSO for general transformation models with right censored data. Comput Statist Data Anal 56(8):2583–2597

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Wang Q (2012) The weighted least square based estimators with censoring indicators missing at random. J Stat Plan Inference 142:2913–2925

    Article  MathSciNet  MATH  Google Scholar 

  • Liao L, Park C, Choi H (2019) Penalized expectile regression: an alternative to penalized quantile regression. Ann Inst Stat Math 71(2):409–438

    Article  MathSciNet  MATH  Google Scholar 

  • Ma Y, Yin G (2011) Censored quantile regression with covariate measurement errors. Stat Sinica 21(2):949–971

    Article  MathSciNet  MATH  Google Scholar 

  • Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica 55(4):818–847

    Article  MathSciNet  MATH  Google Scholar 

  • Peng L, Huang Y (2008) Survival analysis with quantile regression models. J Am Stat Assoc 103(482):637–649

    Article  MathSciNet  MATH  Google Scholar 

  • Portnoy S (2003) Censored regression quantiles. J Am Stat Assoc 98(464):1001–1012

    Article  MathSciNet  MATH  Google Scholar 

  • Ritov Y (1990) Estimation in a linear regression model with censored data. Ann Stat 18(1):303–328

    Article  MathSciNet  MATH  Google Scholar 

  • Schnabel SK, Eilers PHC (2009) Optimal expectile smoothing. Comput Stat Data Anal 53(12):4168–4177

    Article  MathSciNet  MATH  Google Scholar 

  • Seipp A, Uslar V, Weyhe D, Timmer A, Otto-Sobotka F (2021) Weighted expectile regression for right-censored data. Stat Med 40:5501–5520

    Article  MathSciNet  MATH  Google Scholar 

  • Shows JH, Lu W, Zhang HH (2010) Sparse estimation and inference for censored median regression. J Stat Plan Inference 140:1903–1917

    Article  MathSciNet  MATH  Google Scholar 

  • Stute W (1993) Consistent estimation under random censorship when covariables are present. J Multivariate Anal 45(1):89–103

    Article  MathSciNet  MATH  Google Scholar 

  • Stute W (1994) Strong and weak representations of cumulative hazard function and Kaplan–Meier estimators on increasing sets. J Stat Plan Inference 42:315–329

    Article  MathSciNet  MATH  Google Scholar 

  • Stute W (1996) Distributional convergence under random censorship when covariables are present. Scand J Stat 23(4):461–471

    MathSciNet  MATH  Google Scholar 

  • Su W, Yin G, Zhang J, Zhao X (2023) Divide and conquer for accelerated failure time model with massive time-to-event data. Can J Stat 51(2):400–419

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Zhang Z (2009) A class of transformed mean residual life models with censored survival data. J Am Stat Assoc 104(486):803–815

    Article  MathSciNet  MATH  Google Scholar 

  • Tang L, Zhou Z, Wu C (2012) Weighted composite quantile estimation and variable selection method for censored regression model. Stat Probab Lett 82:653–663

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiatis AA (1990) Estimating regression parameters using linear rank tests for censored data. Ann Stat 18(1):354–372

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XG, Song LX (2011) Adaptive Lasso variable selection for the accelerated failure models. Comm Stat Theory Methods 40(24):4372–4386

    Article  MathSciNet  MATH  Google Scholar 

  • Wang HJ, Wang L (2009) Locally weighted censored quantile regression. J Am Stat Assoc 104(487):1117–1128

    Article  MathSciNet  MATH  Google Scholar 

  • Wang JF, Jiang WJ, Xu FY, Fu WX (2021) Weighted composite quantile regression with censoring indicators missing at random. Comm Stat Theory Methods 50(12):2900–2917

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q, Ng KW (2008) Asymptotically efficient product-limit estimators with censoring indicators missing at random. Stat Sinica 18(2):749–768

    MathSciNet  MATH  Google Scholar 

  • Wei LJ (1992) The accelerated failure time model: a useful alternative to the cox regression model in survival analysis. Stat Med 11:1871–1879

    Article  MATH  Google Scholar 

  • Wu Y, Liu Y (2009) Variable selection in quantile regression. Stat Sinica 19(2):801–817

    MathSciNet  MATH  Google Scholar 

  • Wu Y, Ma Y, Yin G (2015) Smoothed and corrected score approach to censored quantile regression with measurement errors. J Am Stat Assoc 110(512):1670–1683

    Article  MathSciNet  MATH  Google Scholar 

  • Xu J, Ying Z (2010) Simultaneous estimation and variable selection in median regression using Lasso-type penalty. Ann Inst Stat Math 62(3):487–514

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Y, Wang N (2023) Variable selection and estimation for accelerated failure time model via seamless-\(L_0\) penalty. AIMS Math 8(1):1195–1207

    Article  MathSciNet  MATH  Google Scholar 

  • Ying Z, Jung SH, Wei LJ (1995) Survival analysis with median regression models. J Am Stat Assoc 90(429):178–184

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Q, Peng L, He X (2018) High dimensional censored quantile regression. Ann Statist 46(1):308–343

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou L (2006) As simple censored median regression estimator. Stat Sinica 16(3):1043–1058

    MathSciNet  MATH  Google Scholar 

  • Zhou X, Wang J (2005) A genetic method of LAD estimation for models with censored data. Comput Stat Data Anal 48(3):451–466

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H (2006) The adaptive Lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1428

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36(3):1108–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the anonymous referees and the Associate Editor for their valuable and constructive suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Ciuperca.

Ethics declarations

Conflict of interest

The author declares that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciuperca, G. Right-censored models by the expectile method. Lifetime Data Anal (2025). https://doi.org/10.1007/s10985-024-09643-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10985-024-09643-w

Keywords

Mathematics Subject Classification