Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Absorptance determinations on multicellular tissues

  • Technical Communication
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The analysis of the variation of the capacity and efficiency of photosynthetic tissues to collect solar energy is fundamental to understand the differences among species in their ability to transform this energy into organic molecules. This analysis may also help to understand natural changes in species distribution and/or abundance, and differences in species ability to colonize contrasting light environments or respond to environmental changes. Unfortunately, the challenge that optical determinations on highly dispersive samples represent has strongly limited the progression of this analysis on multicellular tissues, limiting our knowledge of the role that optical properties of photosynthetic tissues may play in the optimization of photosynthesis and growth of benthonic primary producers. The aim of this study is to stimulate the use of optical tools in marine eco-physiology, offering a succinct description of the more convenient tools and also solutions to resolve the more common technical difficulties that arise while performing optical determinations on highly dispersive samples. Our study focuses on two-dimensional (2D-) parameters: absorptance, transmittance, and reflectance, and illustrates with correct and incorrect examples, specific problems and their respective solutions. We also offer a general view of the broad variation in light absorption shown by photosynthetic structures of marine primary producers, and its low association with pigment content. The ecological and evolutionary functional implications of this variability deserve to be investigated across different taxa, populations, and marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bass M, van Stryland EW, Williams DR, Wolfe WL (2001) Handbook of optics. Volume II. Devices, measurements, and properties. 2nd edn. Sponsored by the Optical Society of America. McGraw-Hill, Inc. New York

    Google Scholar 

  • Beer S, Axelsson L (2004) Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. Eur J Phycol 39(1):1–7. doi:10.1080/0967026032000157138

    Article  Google Scholar 

  • Beer S, Bjork M (2000) A comparison of photosynthetic rates measured by pulse amplitude modulated (PAM) fluorometry and O2 evolution in two tropical seagrasses. Aquat Bot 66:69–73. doi:10.1016/S0304-3770(99)00020-0

    Article  CAS  Google Scholar 

  • Beer S, Vilenkin B, Weil A, Veste M, Susel L, Eshel A (1998) Measuring photosynthesis rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar Ecol Prog Ser 164:293–300

    Article  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170(4):489–504. doi:10.1007/BF00402983

    Article  PubMed  Google Scholar 

  • Borowitzka MA, Larkum AWD (1987) Calcification in algae: mechanisms and the role of metabolism. Crit Rev Plant Sci 6:1–45

    Article  Google Scholar 

  • Cabello-Pasini A, Figueroa FL (2005) Effect of nitrate concentration on the relationship between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta). J Phycol 41(6):1169–1177. doi:10.1111/jpy.2005.41.issue-6

    Article  CAS  Google Scholar 

  • Cayabyab NM, Enríquez S (2007) Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. New Phytol 176(1):108–123. doi:10.1111/j.1469-8137.2007.02147.x

    Article  PubMed  Google Scholar 

  • Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907. doi:10.1007/s00338-010-0638-x

    Article  Google Scholar 

  • Cummings ME, Zimmerman RC (2003) Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex König and Zostera marina L.: optical constraints on photoacclimation. Aquat Bot 75(3):261–274. doi:10.1016/S0304-3770(02)00180-8

    Article  Google Scholar 

  • Dobbs FC, Zimmerman RC, Drake LA (2004) Occurrence of intracellular crystals in leaves of Thalassia testudinum. Aquat Bot 80(1):23–28. doi:10.1016/j.aquabot.2004.03.003

    Article  Google Scholar 

  • Durako MJ (2007) Leaf optical properties and photosynthetic leaf absorptance in several Australian seagrasses. Aquat Bot 87:83–89. doi:10.1016/j.aquabot.2007.03.005

    Article  CAS  Google Scholar 

  • Duysens LMN (1956) The flattening effect of the absorption spectra of suspensions as compared to that of solutions. Biochim Biophys Acta 19:1–12

    Article  CAS  PubMed  Google Scholar 

  • Enríquez S (2005) Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 289:141–150. doi:10.3354/meps289141

    Article  Google Scholar 

  • Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208. doi:10.1007/978-90-481-9268-7

    Google Scholar 

  • Enríquez S, Sand-Jensen K (2003) Variation in light absorption properties of Mentha aquatica L. as a function of leaf form: implications for plant growth. Int J Plant Sci 164(1):125–136. doi:10.1086/344759

    Article  Google Scholar 

  • Enríquez S, Schubert N (2014) Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat Commun 5:3835. doi:10.1038/ncomms4835

    Article  PubMed  PubMed Central  Google Scholar 

  • Enríquez S, Agustí S, Duarte C (1992) Light absorption by seagrass Posidonia oceanica leaves. Mar Ecol Prog Ser 86:201–201

    Article  Google Scholar 

  • Enríquez S, Agustí S, Duarte CM (1994) Light absorption by marine macrophytes. Oecologia 98(2):121–129. doi:10.1007/BF00341462

    Article  PubMed  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50(4):1025–1032. doi:10.4319/lo.2005.50.4.1025

    Article  Google Scholar 

  • Enríquez S, Méndez ER, Hoegh-Guldberg O, Iglesias-Prieto R (2017) Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc Royal Soc London B (in press)

  • Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275. doi:10.1023/A:1023936313544

    Article  CAS  PubMed  Google Scholar 

  • Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384. doi:10.1007/BF00317627

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport rate and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/j.jembe.2015.09.004

    Article  CAS  Google Scholar 

  • Hanssen L (2001) Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples. Appl Opt 40(19):3196–3204. doi:10.1364/AO.40.003196

    Article  CAS  PubMed  Google Scholar 

  • Hedley J, Enríquez S (2010) Optical properties of canopies of the tropical seagrass Thalassia testudinum estimated by a three-dimensional radiative transfer model. Limnol Oceanogr 55(4):1537–1550. doi:10.4319/lo.2010.55.4.1537

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench R (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175. doi:10.3354/meps113163

    Article  Google Scholar 

  • Jacquez JA, Kuppenheim HF (1955) Spectral reflectance of human skin in the region 235–1000 mµ. J Appl Physiol 7(5):523–528

    CAS  PubMed  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, United Kingdom

    Google Scholar 

  • Lüning K, Dring MJ (1985) Action spectra and spectral quantum yield in marine macroalgae with thin and thick thalli. Mar Biol 87:119–129. doi:10.1007/BF00539419

    Article  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38(1):17–38. doi:10.1046/j.1529-8817.2002.00094.x

    Article  Google Scholar 

  • Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot 84:725–739

    Article  CAS  Google Scholar 

  • Ramus J (1990) A form-function analysis of photon capture for seaweeds. Hydrobiologia 204:65–71. doi:10.1007/Bf00040216

    Article  Google Scholar 

  • Rodríguez-Román A, Hernández-Pech X, Thomé PE, Enríquez S, Iglesias-Prieto R (2006) Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol Oceanogr 51(6):2702–2710. doi:10.4319/lo.2006.51.6.2702

    Article  Google Scholar 

  • Runcie M, Durako MJ (2004) Among-shoot variability and leaf-specific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. Aquat Bot 80:209–220. doi:10.1016/j.aquabot.2004.08.001

    Article  CAS  Google Scholar 

  • Schubert N, García-Mendoza E, Enríquez S (2011) Is the photo-acclimatory response of Rhodophyta conditioned by the species carotenoid profile? Limnol Oceanogr 56(6):2347–2361. doi:10.4319/lo.2011.56.6.2347

    Article  CAS  Google Scholar 

  • Shibata K (1959) Spectrophotometry of translucence biological materials: opal glass transmission method. Method Biochem Anal 7:77–109. doi:10.1002/9780470110232.ch3

    CAS  Google Scholar 

  • Shibata K (1969) Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant Cell Physiol 10(2):325–335

    CAS  Google Scholar 

  • Stambler N, Dubinsky Z (2004) Stress Effects on metabolism and photosynthesis of hermatypic corals. In: Rosenberg E, Loya Y (eds) Coral Health and Disease. Springer, Berlin, pp 195–215. doi:10.1007/978-3-662-06414-6_9

    Chapter  Google Scholar 

  • Terán E, Mendez ER, Enríquez S, Iglesias-Prieto R (2010) Multiple light scattering and absorption in reef-building corals. Appl Opt 49(27):5032–5042. doi:10.1364/AO.49.005032

    Article  PubMed  Google Scholar 

  • Terashima I, Saeki T (1983) Light environment within a leaf I. Optical Properties of paradermal sections of camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24(8):1493–1501

    Article  CAS  Google Scholar 

  • Thorhaug A, Richardson AD, Berlyn GP (2006) Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: low salinity effects. Am J Bot 93:110–117. doi:10.3732/ajb.93.1.110

    Article  CAS  Google Scholar 

  • Vásquez-Elizondo RM, S Enríquez (2016) Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep 6:19030/ doi:10.1038/srep19030

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogelmann TC, Björn LO (1983) Response to directional light by leaves of a sun-tracking lupine (Lupinus succulentus). Physiol Plant 59:533–538. doi:10.1111/j.1399-3054.1983.tb06276.x

    Article  Google Scholar 

  • Wangpraseurt D, Larkum AW, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol. doi:10.3389/fmicb.2012.00316

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Three Mexican research projects DGAPA (IN206710); CONACYT (Conv-CB-2009: 129880); and CONACYT-104643 granted to SE have supported this research. The postgraduate program Posgrado en Ciencias del Mar y Limnología (PCMyL) of the Universidad Nacional Autónoma de México (UNAM) is acknowledged for providing the 2-year CONACYT fellowship to the Master thesis of L L-M and MA P-C and 3 years to TS and 4 years to RM V-E to support their respective PhD projects. One UNAM postdoctoral fellowship provided 2-year financial support to WEK. The authors would like to thank Dr. Eugenio R. Méndez for his kind and fundamental contributions to facilitate the immersion of marine biological students and researchers into the understanding of complex interactions between light and biological structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Enríquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 688 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez-Elizondo, R.M., Legaria-Moreno, L., Pérez-Castro, M.Á. et al. Absorptance determinations on multicellular tissues. Photosynth Res 132, 311–324 (2017). https://doi.org/10.1007/s11120-017-0395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0395-6

Keywords