Abstract
Variational Analysis studies mathematical objects under small variations. With regards to optimization, these objects are typified by representations of first-order or second-order information (gradients, subgradients, Hessians, etc). On the other hand, Derivative-Free Optimization studies algorithms for continuous optimization that do not use first-order information. As such, researchers might conclude that Variational Analysis plays a limited role in Derivative-Free Optimization research. In this paper we argue the contrary by showing that many successful DFO algorithms rely heavily on tools and results from Variational Analysis.
Similar content being viewed by others
References
Amaioua, N., Audet, C., Conn, A.R., Le Digabel, S.: Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm. Eur. J. Oper. Res. 268(1), 13–24 (2018)
Audet, C.: Convergence results for generalized pattern search algorithms are tight. Optim. Eng. 5(2), 101–122 (2004)
Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Glob Optim 41, 299–318 (2008)
Audet, C., Côté, P., Poissant, C., Tribes, C.: Monotonic grey box direct search optimization. Optim. Lett. 14, 3–18 (2020)
Audet, C., Dennis, J.E. Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13(3), 889–903 (2003)
Audet, C., Dennis, J.E.: Jr. Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)
Audet, C., Dennis, J.E. Jr., Le Digabel, S.: Globalization strategies for mesh adaptive direct search. Comput. Optim. Appl. 46(2), 193–215 (2010)
Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer International Publishing AG, Switzerland (2017)
Audet, C., Hare, W.: Algorithmic construction of the subdifferential from directional derivatives. Set-Valued Var. Anal. 26(3), 431–447 (2018)
Audet, C., Hare, W.: Model-based methods in derivative-free nonsmooth optimization, chapter 18. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M (eds.) Numerical nonsmooth optimization. Springer (2020)
Audet, C., Ianni, A., Le Digabel, S., Tribes, C.: Reducing the number of function evaluations in mesh adaptive direct search algorithms. SIAM J. Optim. 24(2), 621–642 (2014)
Audet, C., Ihaddadene, A., Le Digabel, S., Tribes, C.: Robust optimization of noisy blackbox problems using the mesh adaptive direct search algorithm. Optim. Lett. 12(4), 675–689 (2018)
Audet, C., Le Digabel, S., Tribes, C.: The mesh adaptive direct search algorithm for granular and discrete variables. SIAM J. Optim. 29(2), 1164–1189 (2019)
Audet, C., Savard, G., Zghal, W.: A mesh adaptive direct search algorithm for multiobjective optimization. Eur. J. Oper. Res. 204(3), 545–556 (2010)
Audet, C., Tribes, C.: Mesh-based nelder?mead algorithm for inequality constrained optimization. Comput. Optim. Appl. 71(2), 331–352 (2018)
Aziz, M., Hare, W., Jaberipour, M., Lucet, Y.: Multi-fidelity algorithms for the horizontal alignment problem in road design. Eng. Optim. 0(0), 1–20 (2019)
Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)
Bajaj, I., Iyer, S.S., Hasan, M.M.F.: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point. Comput. Chem. Eng. 116, 306–321 (2018)
Berahas, A.S., Byrd, R.H., Nocedal, J.: Derivative-free optimization of noisy functions via quasi-N,ewton methods. SIAM J. Optim. 29(2), 965–993 (2019)
Berghen, F.V.: CONDOR: A Constrained, Non-Linear, Derivative-Free Parallel Optimizer for Continuous, High Computing Load, Noisy Objective Functions. PhD Thesis, Université Libre de Bruxelles, Belgium (2004)
Berghen, F.V., Bersini, H.: CONDOR, a new parallel, constrained extension of Powell’s UOBYQA algorithm: experimental results and comparison with the DFO algorithm. jcomam 181, 157–175 (2005)
Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)
Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15(3), 751–779 (2005)
Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and random models. Math. Program. 169, 447–487 (2018)
Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints. Comput. Optim. Appl. 69(2), 267–296 (2018)
Conn, A.R., Scheinberg, K., Toint, Ph.L.: A derivative free optimization algorithm in practice. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. http://perso.fundp.ac.be/phtoint/pubs/TR98-11.ps (1998)
Conn, A.R., Scheinberg, K., Toint, P. h. L.: DFO (Derivative Free Optimization) https://projects.coin-or.org/Dfo (2001)
Conn, A.R., Scheinberg, K.: L.n. Vicente. Geometry of sample sets in derivative free optimization Polynomial regression and underdetermined interpolation. IMA J. Numer. Anal. 28(4), 721–749 (2008)
Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free MOS-SIAM Optimization. Series on Optimization. SIAM, Philadelphia (2009)
Conn, A.R., Toint, P. h. L.: An Algorithm using Quadratic Interpolation for Unconstrained Derivative Free Optimization, pp 27–47. Springer, Berlin (1996). chapter Nonlinear Optimization and Applications
Coope, I.D., Tappenden, R.: Efficient calculation of regular simplex gradients. Comput. Optim. Appl. To appear (2019)
Custódio, A. L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)
Gramacy, R.B., Le Digabel, S.: The mesh adaptive direct search algorithm with treed Gaussian process surrogates. Pacific J. Optim. 11(3), 419–447 (2015)
Hare, W.: Compositions of convex functions and fully linear models. Optim. Lett. 11(7), 1217–1227 (2017)
Hare, W., Jaberipour, M.: Adaptive interpolation strategies in derivative-free optimization: a case study. Pac. J. Optim. 14(2), 327–347 (2018)
Hare, W., Jarry-Bolduc, G.: Calculus identities for generalized simplex gradients Rules and applications. SIAM J. Optim. 30(1), 853–884 (2020)
Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax problems. Comput. Optim. Appl. 56(1), 1–38 (2013)
Hare, W., Nutini, J., Tesfamariam, S.: A survey of non-gradient optimization methods in structural engineering. Adv. Eng. Softw. 59, 19–28 (2013)
Hare, W., Planiden, C., Sagastizábal, C.: A derivative-free VU-algorithm for convex finite-max problems. Optim. Methods Softw., (to appear). https://www.tandfonline.com/doi/full/10.1080/10556788.2019.1668944
Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim Appl. 63(1), 1–28 (2016)
Hare, W.L., Lucet, Y.: Derivative-free optimization via proximal point methods. J. Optim. Theory Appl. 160(1), 204–220 (2014)
Hooke, R., Jeeves, T.A.: “Direct Search” solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8(2), 212–229 (1961)
Khan, K.A., Larson, J., Wild, S.M.: Manifold sampling for optimization of nonconvex functions that are piecewise linear compositions of smooth components. SIAM J. Optim. 28(4), 3001–3024 (2018)
Larson, J., Menickelly, M., Wild, S.M.: Manifold sampling for ℓ1 nonconvex optimization. SIAM J. Optim. 26(4), 2540–2563 (2016)
Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019)
Lera, D., Sergeyev, Y.D.: GOSH: derivative-free global optimization using multi-dimensional space-filling curves. J. Global Optim. 71(1), 193–211 (2018)
Liuzzi, G., Lucidi, S., Rinaldi, F., Vicente, L.N.: Trust-region methods for the derivative-free optimization of nonsmooth black-box functions. SIAM J. Optim. 29(4), 3012–3035 (2019)
Menickelly, M., Wild, S.M.: Derivative-free robust optimization by outer approximations. Math. Program. 179(1-2, Ser. A), 157–193 (2020)
Mifflin, R.: A superlinearly convergent algorithm for minimization without evaluating derivatives. Math. Program. 9(1), 100–117 (1975)
Müller, J., Day, M.: Surrogate optimization of computationally expensive black-box problems with hidden constraints. INFORMS J. Comput. To appear (2019)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
Oeuvray, R., Bierlaire, M.: Boosters: a derivative-free algorithm based on radial basis functions. Int. J. Model. Simul. 29(1), 26–36 (2009)
Paquette, C., Scheinberg, K.: A stochastic line search method with convergence rate analysis (2018)
Polak, E., Wetter, M.: Precision control for generalized pattern search algorithms with adaptive precision function evaluations. SIAM J. Optim. 16(3), 650–669 (2006)
Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, Proceedings of the 6th Workshop on Optimization and Numerical Analysis, Oaxaca, Mexico, vol. 275, pp. 51–67, Kluwer Academic Publishers, Dordrecht (1994)
Powell, M.J.D.: UOBYQA: Unconstrained optimization by quadratic approximation. Technical Report DAMTP 2000/NA14, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England (2000)
Powell, M.J.D.: UOBYQA: Unconstrained Optimization by quadratic approximation. Math. Program. 92(3), 555–582 (2002)
Powell, M.J.D.: On trust region methods for unconstrained minimization without derivatives. Math. Program. 97(3), 605–623 (2003)
Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Program. 100(1), 183–215 (2004)
Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report, Department of Applied Mathematics and Theoretical Physics, Cambridge University, UK (2009)
Regis, R.G.: The calculus of simplex gradients. Optim. Lett. 9(5), 845–865 (2015)
Regis, R.G.: On the properties of positive spanning sets and positive bases. Optim. Eng. 17(1), 229–262 (2016)
Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2), 514–535 (2007)
Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)
Shashaani, S., Hashemi, F.S., Pasupathy, R.: ASTRO-DF: a class of adaptive sampling trust-region algorithms for derivative-free stochastic optimization. SIAM J. Optim. 28(4), 3145–3176 (2018)
Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)
Verdério, A., Karas, E.W., Pedroso, L.G., Scheinberg, K.: On the construction of quadratic models for derivative-free trust-region algorithms. EURO J. Comput Optim 5, 501–527 (2017)
Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)
Wild, S.M., Shoemaker, C.A.: Global convergence of radial basis function trust region derivative-free algorithms. SIAM J. Optim. 21(3), 761–781 (2011)
Winfield, D.: Function and Functional Optimization by Interpolation in Data Tables. PhD thesis Harvard University USA (1969)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Hare’s research is partially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant #2018-03865.
Rights and permissions
About this article
Cite this article
Hare, W. A Discussion on Variational Analysis in Derivative-Free Optimization. Set-Valued Var. Anal 28, 643–659 (2020). https://doi.org/10.1007/s11228-020-00556-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11228-020-00556-y
Keywords
- Derivative-Free Optimization
- Variational Analysis
- Direct-search method
- model-based methods
- order-N accuracy