Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Application of hydrodynamic cavitation in ballast water treatment

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO’s International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abu-Khader MM, Badran O, Attarakih M (2011) Ballast water treatment technologies: hydrocyclonic a viable option. Clean Techn Environ Policy 13:403–413

    Article  Google Scholar 

  • Al-Juboori R, Aravinthan V, Yusaf T (2010) A review of Common and Alternative Methods for Disinfection of Microorganisms in Water. Paper presented at Southern Region Engineering Conference Toowoomba, Australia, November 11-12

    Google Scholar 

  • American Bureau of Shipping (ABS) (2010) ABS guide for ballast water exchange. https://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%20Repository/Rules & Guides/Current/171_BallastWaterExch/Guide. [accessed 6/12/14]

  • American Bureau of Shipping (ABS) (2011) Ballast Water Treatment Advisory. http://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%20Repository/References/ABS%20Advisories/BWTreatmentAdv. [accessed 6/12/14]

  • Andersen AB (2009) Liquid treatment methods and apparatus. USA Patent No. 2009/0321260 A1

  • Arrajo S, Benito Y, Tarifa AM (2008) A theoretical study of hydrodynamic cavitation. Ultrason Sonochem 15:203–211

    Article  Google Scholar 

  • Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C 6:264–273

    Article  CAS  Google Scholar 

  • Balasundaram B, Harrison STL (2011) Optimising orifice geometry for selective release of periplasmic products during cell disruption by hydrodynamic cavitation. Biochem Eng J 54:207–209

    Article  CAS  Google Scholar 

  • Balasundaram B, Pandit AB (2001) Selective release of invertase by hydrodynamic cavitation. Biochem Eng J 8:251–256

  • Batoeva AA, Aseev DG, Sizykha MR, Vol’nov IN (2011) A Study of Hydrodynamic Cavitation Generated by Low Pressure Jet Devices. Russ J Appl Chem 84:1366–1370

  • Battle J (2009) Silent Invasion – the spread of marine invasive species via ships’ ballast water. WWF International, Gland

    Google Scholar 

  • Bauer GLS, Duff RE (1958) Kinetic studies of hydroxyl radicals in shock waves. I. The decomposition of water between 2400°K and 3200°K. Chem Phys 28:1089–1095

    CAS  Google Scholar 

  • Benito Y, Arrojo S, Hauke G, Vidal P (2005) Hydrodynamic cavitation as a low-cost AOP for wastewater treatment: preliminary results and a new design approach. WIT Trans Ecol Environ 80:495–503

    CAS  Google Scholar 

  • Bowmer T, Linders J (2014) A summary of findings from the first 25 ballast water treatment systems evaluated by GESAMP. WMU J Marit Aff 9:223–230

    Article  Google Scholar 

  • Braeutigam P, Wu ZL, Stark A, Ondruschka B (2009) Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem Eng Technol 32:745–753

    Article  CAS  Google Scholar 

  • Brennen CE (1995) Cavitation and Bubble Dynamics. Oxford University Press, New York

    Google Scholar 

  • Brujan EA (2011) Cavitation in Non-Newtonian Fluids. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Cai J, Huai X, Li X (2009) Dynamic behaviors of cavitation bubble for the steady cavitating flow. J Therm Sci 18:338–344

    Article  CAS  Google Scholar 

  • Carlton JT (1999) The scale and ecological consequences of biological invasions in the world’s oceans. In: Sunderland OT, Schei PJ, Viken A (eds) Invasive Species and Biodiversity Management. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 195–212

    Chapter  Google Scholar 

  • Carlton JT (2001) Introduced species in U.S. coastal waters: environmental impacts and management priorities. Pew Oceans Commission, Arlington

    Google Scholar 

  • Carney K, Basurko OC, Pazouki K, Marsham S, Delany JE, Desai DV, Anil AC, Mesbahi E (2013) Difficulties in obtaining representative samples for compliance with the ballast water management convention. Mar Pollut Bull 68:99–105

    Article  CAS  Google Scholar 

  • Cerri MO, Futiwaki L, Jesus CDF, Cruz AJG, Badino AC (2008) Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor. Biochem Eng J 39:51–57

    Article  CAS  Google Scholar 

  • Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2009) Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem Eng J 152:498–502

    Article  CAS  Google Scholar 

  • Champ MA (2002) Marine Testing Board for certification of ballast water treatment technologies. Mar Pollut Bull 44:1327–1335

    Article  CAS  Google Scholar 

  • Chivate MM, Pandit AB (1993) Effect of sonic and hydrodynamic cavitation on aqueous polymeric solutions. Ind Chem Eng 35:52–57

    CAS  Google Scholar 

  • Cvetković M, Grego M, Turk V (2015) XXX. In preparation

  • David M, Gollasch S (2012) New ballast water technologies. http://www.marine-vectors.eu/pdf/FS-07_ballast.pdf. [accessed 6/18/14]

  • David M, Gollasch S (2008) EU shipping in the dawn of managing the ballast water issue. Mar Pollut Bull 56:1966–1972

    Article  CAS  Google Scholar 

  • Delacroix S, Vogelsang C, Tobiesen A, Liltved H (2013) Disinfection by - products and ecotoxicity of ballast water after oxidative treatment - results and experiences from seven years of full - scale testing of ballast water management systems. Mar Pollut Bull 73:24–36

    Article  CAS  Google Scholar 

  • Doulah MS (1977) Mechanism of biological cells in Ultrasonic cavitation. Biotechnol Bioeng 19:649–660

    Article  CAS  Google Scholar 

  • Endresen Ø, Behrens HL, Brynestad S, Andersen AB, Skjong R (2004) Challenges in global ballast water management. Mar Pollut Bull 48:615–623

    Article  CAS  Google Scholar 

  • Engler CR, Robinson CW (1981) Effects of organism type and growth conditions on cell disruption by impingement. Biotechnol Lett 3:83–88

    Article  Google Scholar 

  • European Commission (2014) Non-indigenous Species http://ec.europa.eu/environment/marine/good-environmental-status/descriptor-2/index_en.htm. [accessed 4/30/14]

  • Faimali M, Garaventa F, Chelossi E, Piazza V, Saracino OD, Rubino F, Mariottini GL, Pane L (2006) A new photodegradable molecule as a low impact ballast water biocide: efficacy screening on marine organisms from different tropic levels. Mar Biol 149:7–16

    Article  CAS  Google Scholar 

  • Farkade VD, Harrison STL, Pandit AB (2006) Improved cavitational cell disruption following pH pretreatment for the extraction of β-galactosidase from Kluveromyces lactis. Biochem Eng J 31:25–30

    Article  CAS  Google Scholar 

  • Fisher D, Yonkos L, Ziegler G, Friedel E, Burton D (2014) Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana. Water Res 55:233–244

    Article  CAS  Google Scholar 

  • Flagella MM, Abdulla AA (2005) Ship ballast water as a main vector of marine introductions in the Mediterranean sea. WMU J Marit Aff 4:95–104

    Article  Google Scholar 

  • Flint IM, Burstein MA (2000) Flotation: Column cells. In: Wilson ID et al (eds) Encyclopedia of Separation Science. Academic Press, San Diego, pp 1471–1480

    Chapter  Google Scholar 

  • Främmande A (2006) Blue crab (Callinectes sapidus). http://www.frammandearter.se/0/2english/pdf/Callinectes_sapidus.pdf. [accessed 6/12/14]

  • Galil BS, Shoval L, Goren M (2009) Phyllorhiza punctata von Lendenfeld, 1884 (Scyphozoa: Rhizostomeae: Mastigiidae) reappeared off the Mediterranean coast of Israel. Aquat Invasions 4:481–483

    Article  Google Scholar 

  • Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry–a review. Int Dairy J 12:541–553

    Article  CAS  Google Scholar 

  • Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors I: sonochemical reactors. AICHE J 46:372

    Article  CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

  • Gogate PR (2008) Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem Eng Process 47:515–527

    Article  CAS  Google Scholar 

  • Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical

  • Gogate PR, Pandit AB (2011) Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation. In: Pankaj X, Ashokkumar M (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer Science Business Media B.V, New York, pp 69–107

    Google Scholar 

  • Gogate PR (2002) Cavitation: an auxiliary technique in wastewater treatment schemes. Adv Environ Res 6:335–358

    Article  CAS  Google Scholar 

  • Gollasch S (2005) Overview on introduced aquatic species in European navigational and adjacent waters. Helgol Mar Res 60:84–89

    Article  Google Scholar 

  • Gollasch S (2007) Is Ballast Water a Major Dispersal Mechanism for Marine Organisms? In: Nentwig W (ed) Ecological Studies - Biological Invasions. Springer-Verlag, Berlin, pp 49–57

    Chapter  Google Scholar 

  • Graham WM, Martin DL, Felder DL, Asper VL, Perry HM (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5:53–69

    Article  Google Scholar 

  • Gregg M, Rigby G, Hallegraeff GM (2009) Review of two decades of progress in the development of management options for reducing or eradicating phytoplankton, zooplankton and bacteria in ship’s ballast water. Aquat Invasions 4:521–565

    Article  Google Scholar 

  • Hanzon BD, Vigilia R (1999) UV Disinfection. Wastewater Technol, Showc 3:24–28

    Google Scholar 

  • Harrison STL, Pandit AB (1992) The disruption of microbial cells by hydrodynamic cavitation. In: Proc. of 9th Int. Biotech. Symp., Washington, USA

  • Holm ER, Stamper DM, Brizzolara RA, Barnes L, Deamer N, Burkholder JM (2008) Sonication of bacteria, phytoplankton and zooplankton: application to treatment of ballast water. Mar Pollut Bull 56:1201–1208

    Article  CAS  Google Scholar 

  • Ibrahim AM, El-naggar MMA (2012) Ballast water review: impacts, treatments and management. Middle-East J Sci Res 12:976–984

    Google Scholar 

  • International Maritime Organisation (IMO) (2014a) Aquatic Invasive Species (AIS) http://www.imo.org/OurWork/Environment/BallastWaterManagement/Pages/AquaticInvasiveSpecies%28AIS%29.aspx. [accessed 5/17/14]

  • International Maritime Organisation (IMO) (2014b) BWM Convention http://www.imo.org/OurWork/Environment/BallastWaterManagement/Pages/BWMConvention.aspx. [accessed 5/17/14]

  • International Maritime Organisation (IMO) (2014c) List of ballast water management systems which received Type Approval Certification by their respective Administrations http://www.imo.org/OurWork/Environment/BallastWaterManagement/Documents/table%20updated%20in%20October%202012%20including%20TA%20information.pdf [accessed 12/18/14]

  • International Maritime Organisation (IMO), Marine Environmental Protection Committee (MEPC) (2004) Harmful aquatic organisms in ballast water - Protocols for Testing Ballast Water Treatment Systems Under the Environmental Technology Verification (ETV) Program Submitted by the United States. MEPC 52/INF.5

  • International Maritime Organisation (IMO), Marine Environmental Protection Committee (MEPC) (2012) Report of the marine environment protection comittee on its sixty – fourth session. MEPC 64/23/Add.1

  • International Maritime Organisation (IMO), Marine Environmental Protection Committee (MEPC) (2006a) Harmful aquatic organisms in ballast water - Ballast water treatment technology: application of hydrodynamic cavitation, Submitted by India. MEPC 55/2/13

  • International Maritime Organisation (IMO), Marine Environmental Protection Committee (MEPC) (2006b) Harmful aquatic organisms in ballast water - Report of the Ballast Water Review Group. MEPC 55/WP.4

  • International Maritime Organisation (IMO), Marine Environmental Protection Committee (MEPC) (2013) Report of the marine environment protection committee on its sixty-fifth session. MEPC 65/22

  • International Maritime Organization (IMO), Marine Environmental Protection Committee (MEPC) (2011) Harmful aquatic organisms in ballast water - Information on the Type Approval of the OceanSaver® Ballast Water Management System, Submitted by Norway. MEPC 62/INF.15.

  • ISSG, Global Invasive Species Database (2014) http://www.issg.org/database/species/ecology.asp?si=731&fr=1&sts=.[accessed 5/19/14]

  • JFE Engineering Corporation (2014) Ballast water management system, JFE BallastAcehttp://www.jfe-eng.co.jp/en/products/machine/marine/mar01.html. [accessed 7/2/14]

  • Joo-won O (2010) Guidelines for Application of Ballast Water Treatment Systems in Ships. Korean Register of Shipping, Korea

    Google Scholar 

  • Jyoti KK, Pandit AB (2003) Hybrid cavitation methods for water disinfection. Biochem Eng J 14:9–17

    Article  CAS  Google Scholar 

  • Jyoti KK, Pandit AB (2004) Ozone and cavitation for water disinfection. Biochem Eng J 18:9–19

    Article  CAS  Google Scholar 

  • Jyoti KK, Pandit AB (2001) Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J 7:201–212

    Article  CAS  Google Scholar 

  • Kato H (2003) Cavitation as a tool of environmental protection. Paper presented at CAV 2003: Fifth International Symposium on Cavitation. Osaka, Japan, June 20-23

    Google Scholar 

  • Keshavarz T, Eglin R, Walker E, Bucke C, Holt G, Bull AT, Lilly MD (1990) The large scale immobilization of Penicillium chrysogenum: batch and continuous operation in an air lift reactor. Biotechnol Bioeng 36:763–770

    Article  CAS  Google Scholar 

  • King DM, Hagan PT, Riggio M, Wright DA (2012) Preview of global ballast water treatment markets. J Mar Eng Technol 11:3–15

    Google Scholar 

  • Knapp R, Daily J, Hammitt F (1970) Cavitation. McGraw Book Company, NY

    Google Scholar 

  • Kuiper G (2012) Physics of Cavitation: Gas Content and Nuclei, http://ocw.tudelft.nl/courses/marine-technology/cavitation-on-ship-propellers/3-physics-of-cavitation-gas-content-and-nuclei/.[accessed 6/27/14]

  • Lavesque N, Bachelet G, Béguer M, Girardin M, Lepage M, Blanchet H, Sorbe J, Modéran J, Sauriau P, Auby I (2010) Recent expansion of the oriental shrimp Palaemon macrodactylus (Crustacea: Decapoda) on the western coasts of France. Aquat Invasions 5:S103–S108

    Article  Google Scholar 

  • Liebich V, Stehouwer PP, Veldhuis M (2012) Re-growth of potential invasive phytoplankton following UV-based ballast water treatment. Aquat Invasions 7(29–36)

  • Lloyd’s Register (2010) Ballast water treatment systems. https://portalmaritimo.files.wordpress.com/2010/10/bwts_lloydsreg.pdf.[accessed 12/12/14]

  • Lloyd’s Register (2012) Ballast water treatment technologies and current system availability. http://www.lr.org/Images/BWT2012v2b_tcm155-242898.pdf. [accessed 6/14/14]

  • Lloyd’s Register Group Limited (2014) Understanding ballast water management Guidance for shipowners and operators. http://www.lr.org/Images/Understanding%20Ballast%20Water%20Management_0214_tcm155-248816.pdf. [accessed 6/12/14]

  • Mason TJ, Joyce E, Phull SS, Lorimer JP (2003) Potential uses of ultrasound in the biological decontamination of water. Ultrason Sonochem 10:319–323

    Article  CAS  Google Scholar 

  • McNulty PD (2005) Removal of dissolved oxygen from water thereby reducing the population of undesirable aquatic organism present in the water while inhibiting corrosion; especially using a venturi injector. US Patent No.6840983 B2

  • Mezule L, Larsson S, Juhna T (2013) Application of DVC-FISH method in tracking Escherichia coli in drinking water distribution networks. Drink Water Eng Sci 6:25–31

    Article  CAS  Google Scholar 

  • Minchin D (2006) The transport and the spread of living aquatic species. In: Davenport JL (ed) The Ecology of Transportation: Managing Mobility for the Environment. Springer, The Netherlands, pp 77–97

    Chapter  Google Scholar 

  • Mishra C, Pelesa Y (2006) An experimental investigation of hydrodynamic cavitation in micro - Venturis. Phys Fluids 18:103603–103603-5

    Article  Google Scholar 

  • Mitsui Engineering & Shipbuilding Co., LTD (2014) FineBallast MF http://www.mes.co.jp/english/business/ship/pdf/ship_14/mf.pdf. [accessed 7/2/14]

  • Modak N (2008) Enhanced photo-sono process for disinfection of surface and subsurface water. Diss Abstr Int 69:137

    Google Scholar 

  • Moholkar VS, Senthil Kumar PS, Pandit AB (2009) Hydrodynamic cavitation for sonochemical effects. Ultrason Sonochem 6:53–65

    Article  Google Scholar 

  • Moussou P, Lafon P, Potapov S, Paulhiac L, Tijsseling A (2004) Industrial cases of FSI due to internal flows. In: Ninth International Conference on Pressure Surges, BHR Group Limited, Chester (UK), pp 167–184

  • N.E.I. Treatment Systems (2014) The VOS™ Ballast Water Treatment solution http://www.neimarine.com/en/the-vosatrade-bwts-solution. [accessed 7/2/14]

  • O.S.K. Mitsui Lines (2014) FineBallast MF http://www.mol.co.jp/opensea_back/1110/1110image/1110ner_02l.jpg. [accessed 7/2/14]

  • Oceansaver (2014) OceanSaver, How it works http://www.oceansaver.com/how_it_works.html [accessed 7/2/14]

  • Oemcke DJ, van Leeuwen JH (2005) Ozonation of the marine dinoflagellate alga Amphidinium sp.-implications for ballast water disinfection. Water Res 39:5119–5125

    Article  CAS  Google Scholar 

  • Okamoto Y, Fujiwara S, Fuchigami K, Nakahara K, Inoko M, Ishida S (2010) Apparatus for treating ballast water and method for treating ballast water, USA Patent No. 7,776,224 B2

  • Ozonek J, Lenik K (2011) Effect of different design features of the reactor on hydrodynamic cavitation process. Arch Mater Sci Eng 52:112–117

    Google Scholar 

  • Ozonek J (2012) Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, London

    Book  Google Scholar 

  • Pandit AB, Joshi JB (1993) Hydrolysis of fatty oils: effect of cavitation. Chem Eng Sci 48:3440

    Article  CAS  Google Scholar 

  • Perrins JC, Cooper WJ, van Leeuwen JH, Herwig RP (2006) Ozonation of seawater from different locations: formation and decay of total residual oxidant-implications for ballast water treatment. Mar Pollut Bull 52:1023–1033

    Article  CAS  Google Scholar 

  • Qun W, Zhi-quan H, Xin-ping Z, Bo X (2008) Experimental study on the degradation of Rhodamine B by hydrodynamic cavitation technique. J Environ Sci Eng 2:1–6

    Google Scholar 

  • Ranade VV, Bhalchandra A, Anil AC, Sawant SS, Ilangovan D, Madhan R, Venkat KP (2009) Apparatus for filtration and disinfection of sea water/ship’s ballast water and a method of same, USA Patent No.7,585,416 B2

  • Ruiz GM, Miller, AW, Lion K, Steves B, Arnwine A, Collinetti E, Wells E (2001) Status and trends of ballast water management in the United States. United States Coast Guard. http://invasions.si.edu/NBIC/nbic_news.htm. [accessed 5/17/14]

  • Sassi J, Viitasalo S, Rytkonen J, Leppakoski E (2005) Experiments with ultraviolet light, ultrasound and ozone technologies for onboard ballast water treatment. VTT Tiedotteita - Res Notes 2313:80

    Google Scholar 

  • Satir T (2008) Ship’s Ballast Water And Marine Pollution. In: Gonca Coskun H, Kerem Cigizoglu H, Derya Maktav M (eds) Integration of Information for Environmental Security, NATO Science for Peace and Security Series C: Environmental Security. Springer, The Netherlands, pp 453–463

    Google Scholar 

  • Save SS, Pandit AB, Joshi JB (1994) Microbial cell disruption: role of cavitation. Chem Eng J 55:B67–B72

    Google Scholar 

  • Save SS, Pandit AB, Joshi JB (1997) Use of hydrodynamic cavitation for large scale cell disruption. Chem Eng Res Des C 75:41–49

    Google Scholar 

  • Sawant SS, Anil AC, Krishnamurthy V, Gaonkar C, Kolwalkar J, Khandeparker L, Desai D, Mahulkar AV, Ranade VV, Pandit AB (2008) Effect of hydrodynamic cavitation on zooplankton: a tool for disinfection. Biochem Eng J 42:320–328

    Article  CAS  Google Scholar 

  • Scherba G, Weigel RM, O’Brien WD (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. App Env Microb 57:2079–2084

    CAS  Google Scholar 

  • Sivakumar M, Pandit AB (2002) Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem 9:123–131

    Article  CAS  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  CAS  Google Scholar 

  • Ueki S, Saito M, Takemura N, Kadomoto Y, Nojiri T, Onishi I, KuWajima M, Matsumoto M (2012) Ballast water treatment apparatus. USA Patent No.8,147,686 B2

  • Veldhuis MJW, Fuhr F, Boon JP, Ten Hallers-Tjabbers CC (2006) Treatment of ballast water; how to test a system with a modular concept? Environ Technol 27:909–921

    Article  CAS  Google Scholar 

  • Veldhuis M, Hallers C, de la Rivière EB, Fuhr F, Finke J, Stehouwer PP, van de Star I, van Slooten C (2010) Ballast water treatment systems: “Old”and “New”Ones. WMU J Marit Aff 2:213–222

    Article  Google Scholar 

  • Viten’ko TN, Gumnitskii YM (2007) A mechanism of the activating effect of hydrodynamic cavitation on water. J Water Chem Technol 29:231–237

    Article  Google Scholar 

  • Wang LP, Lu L, Xu X, Chen YZ, Gao NY (2010) Research on Algae removal by Ultrasonic and jet combined process. 4:21-25

  • Werschkun B, Höfer T, Grenier M (2012) Emerging risks from ballast water treatment. Federal Institute for Risk Assessment, Berlin

    Google Scholar 

  • Xu Y, Yang J, Wang Y, Liu F, Jia J (2006) The effects of jet cavitation on the growth of Microcystis aeruginosa. J Environ Sci Health A 41:2345–2358

    Article  CAS  Google Scholar 

  • Wu D, You H, Du J, Chen C, Jin D (2011a) Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water. J Environ Sci 23:513–519

    Article  CAS  Google Scholar 

  • Wu D, You H, Zhang R, Chen C, Lee D-J (2011b) Ballast waters treatment using UV/Ag–TiO2 + O3 advanced oxidation process with Escherichia coli and Vibrio alginolyticus as indicator microorganisms

  • Yukihiko O, Satoru A, Koji F (2011) JFE Ballast Water Management System, JFE technical report No. 16. http://www.jfe-steel.co.jp/en/research/report/016/pdf/016-02.pdf . [accessed 6/27/14]

  • Yusaf T (2013) Experimental study of microorganism disruption using shear stress. Biochem Eng J 79:7–14

    Article  Google Scholar 

  • Zhang N, Hu K, Shan B (2014) Ballast water treatment using UV/TiO2 advanced oxidation processes: an approach to invasive species prevention. Chem Eng J 243:7–13

    Article  CAS  Google Scholar 

  • Zhou ZA, Xu ZJA (2009) Finch On the role of cavitation in particle collection during flotaion - a critical review. Miner Eng 22:419–433

    Article  CAS  Google Scholar 

  • Zupanc M, Kosjek T, Petkovšek M, Dular M, Kompare B, Širok B, Stražar M, Heath E (2014) Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrason Sonochem 21:1213–1221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Ljubljana for financial support during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Cvetković.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvetković, M., Kompare, B. & Klemenčič, A.K. Application of hydrodynamic cavitation in ballast water treatment. Environ Sci Pollut Res 22, 7422–7438 (2015). https://doi.org/10.1007/s11356-015-4360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4360-7

Keywords