Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Acyclic coloring of graphs without bichromatic long path

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Let G be a graph of maximum degree Δ. A proper vertex coloring of G is acyclic if there is no bichromatic cycle. It was proved by Alon et al. [Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2(3): 277–288] that G admits an acyclic coloring with O4/3) colors and a proper coloring with O(k-1)/(k-2)) colors such that no path with k vertices is bichromatic for a fixed integer k ≥ 5. In this paper, we combine above two colorings and show that if k ≥ 5 and G does not contain cycles of length 4, then G admits an acyclic coloring with O(k-1)/(k-2)) colors such that no path with k vertices is bichromatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N, Mcdiarmid C, Reed B. Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2(3): 277–288

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon N, Mohar B, Sanders D P. On acyclic colorings of graphs on surfaces. Israel J Math, 1996, 94(1): 273–283

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin O V. On acyclic colorings of planar graphs. Discrete Math, 1979, 25(3): 211–236

    Article  MathSciNet  MATH  Google Scholar 

  4. Borodin O V, Flaass F D, Kostochka A V, Raspaud A, Sopena é. Acyclic list 7-coloring of planar graphs. J Graph Theory, 2002, 40(2): 83–90

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin O V, Kostochka A V, Raspaud A, Sopena É. Acyclic colouring of 1-planar graphs. Discrete Appl Math, 2001, 114(1): 29–41

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen M, Raspaud A. A sufficient condition for planar graphs to be acyclically 5-choosable. J Graph Theory, 2012, 70(2): 135–151

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen M, Raspaud A. Planar graphs without 4- and 5-cycles are acyclically 4-choosable. Discrete Appl Math, 2013, 161: 921–931

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen M, Raspaud A, Roussel N, Zhu X. Acyclic 4-choosability of planar graphs. Discrete Math, 2011, 311(1): 92–101

    Article  MathSciNet  MATH  Google Scholar 

  9. Coleman T F, Cai J. The acyclic coloring problem and estimation of spare Hessian matrices. SIAM J Algebraic Discrete Methods, 1986, 7(2): 221–235

    Article  MathSciNet  MATH  Google Scholar 

  10. Coleman T F, Moré J J. Estimation of sparse Hessian matrices and graph coloring problems. Math Program, 1984, 28(3): 243–270

    Article  MATH  Google Scholar 

  11. Drmota M. Combinatorics and asymptotics on trees. Cubo, 2004, 6(2): 105–136

    MathSciNet  MATH  Google Scholar 

  12. Esperet L, Parreau A. Acyclic edge-coloring using entropy compression. European J Combin, 2013, 34(6): 1019–1027

    Article  MathSciNet  MATH  Google Scholar 

  13. Fertin G, Raspaud A, Reed B. Star coloring of graphs. J Graph Theory, 2004, 47(3): 163–182

    Article  MathSciNet  MATH  Google Scholar 

  14. Flajolet P, Sedgewick R. Analytic Combinatorics. London: Cambridge University Press, 2009

    Book  MATH  Google Scholar 

  15. Grünbaum B. Acyclic colorings of planar graphs. Israel J Math, 1973, 14(4): 390–408

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostochka A V, Mel’nikov L. Note to the paper of Grünbaum on acyclic colorings. Discrete Math, 1976, 14(4): 403–406

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostochka A V, Sopena É, Zhu X. Acyclic and oriented chromatic numbers of graphs. J Graph Theory, 1997, 24(4): 331–340

    Article  MathSciNet  MATH  Google Scholar 

  18. Montassier M, Raspaud A, Wang W. Acyclic 5-choosability of planar graphs without small cycles. J Graph Theory, 2007, 54(3): 245–260

    Article  MathSciNet  MATH  Google Scholar 

  19. Moser R A, Tardos G. A constructive proof of the general Lovász Local Lemma. J ACM, 2010, 57(2): 11

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wu, S. Acyclic coloring of graphs without bichromatic long path. Front. Math. China 10, 1343–1354 (2015). https://doi.org/10.1007/s11464-015-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0497-4

Keywords

MSC