Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel wavelet schemes for images

How to make the wavelet transform friendly to parallel architectures

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, we introduce several new schemes for calculation of discrete wavelet transforms of images. These schemes reduce the number of steps and, as a consequence, allow to reduce the number of synchronizations on parallel architectures. As an additional useful property, the proposed schemes can reduce also the number of arithmetic operations. The schemes are primarily demonstrated on CDF 5/3 and CDF 9/7 wavelets employed in JPEG 2000 image compression standard. However, the presented method is general, and it can be applied on any wavelet transform. As a result, our scheme requires only two memory barriers for 2-D CDF 5/3 transform compared to four barriers in the original separable form or three barriers in the non-separable scheme recently published. Our reasoning is supported by exhaustive experiments on high-end graphics cards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://www.fit.vutbr.cz/research/prod/?id=483.

References

  1. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992). doi:10.1002/cpa.3160450502

    Article  MathSciNet  MATH  Google Scholar 

  2. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998). doi:10.1007/BF02476026

    Article  MathSciNet  MATH  Google Scholar 

  3. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). doi:10.1109/34.192463

    Article  MATH  Google Scholar 

  4. Matela, J.: GPU-based DWT acceleration for JPEG2000. In: Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, pp. 136–143 (2009)

    Chapter  Google Scholar 

  5. Arguello, F., Heras, D.B., Boo, M., Lamas-Rodriguez, J.: The split-and-merge method in general purpose computation on GPUs. Parallel Comput. 38(6–7), 277–288 (2012). doi:10.1016/j.parco.2012.03.003

    Article  Google Scholar 

  6. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. With contributions from Gabriel Peyre, 3rd edn. Academic Press, London (2009)

    MATH  Google Scholar 

  7. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Cambridge (1997)

    MATH  Google Scholar 

  8. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic Anal. 3(2), 186–200 (1996)

    Article  MathSciNet  Google Scholar 

  9. Rauber, T., Runger, G.: Parallel Programming: For Multicore and Cluster Systems. Springer, Berlin (2013). doi:10.1007/978-3-642-37801-0

    Book  Google Scholar 

  10. Franco, J., Bernabe, G., Fernandez, J., Ujaldon, M.: The 2D wavelet transform on emerging architectures: GPUs and multicores. J. Real-Time Image Process. 7(3), 145–152 (2011). doi:10.1007/s11554-011-0224-7

    Article  Google Scholar 

  11. Tenllado, C., Lario, R., Prieto, M., Tirado, F.: The 2D discrete wavelet transform on programmable graphics hardware. Vis. Imaging Image Process. Conf. 2004, 808–813 (2004)

    Google Scholar 

  12. Tenllado, C., Setoain, J., Prieto, M., Pinuel, L., Tirado, F.: Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans. Parallel Distrib. Syst. 19(3), 299–310 (2008). doi:10.1109/TPDS.2007.70716

    Article  Google Scholar 

  13. Franco, J., Bernabe, G., Fernandez, J., Acacio, M.: A parallel implementation of the 2D wavelet transform using CUDA. In: 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 111–118 (2009). doi:10.1109/PDP.2009.40

  14. Blazewicz, M., Ciznicki, M., Kopta, P., Kurowski, K., Lichocki, P.: Two-dimensional discrete wavelet transform on large images for hybrid computing architectures: GPU and CELL. In: Euro-Par 2011: Parallel Processing Workshops, LNCS, vol. 7155, pp. 481–490. Springer, Berlin. doi:10.1007/978-3-642-29737-3_53 (2012)

    Chapter  Google Scholar 

  15. Galiano, V., Lopez, O., Malumbres, M., Migallon, H.: Improving the discrete wavelet transform computation from multicore to GPU-based algorithms. In: Proceedings of the 11th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE), pp. 544–555 (2011)

  16. Galiano, V., Lopez, O., Malumbres, M., Migallon, H.: Parallel strategies for 2D discrete wavelet transform in shared memory systems and GPUs. J. Supercomput. 64(1), 4–16 (2013). doi:10.1007/s11227-012-0750-5

    Article  Google Scholar 

  17. van der Laan, W., Roerdink, J.B.T.M., Jalba, A.: Accelerating wavelet-based video coding on graphics hardware using CUDA. In: Proceedings of 6th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 608–613 (2009). doi:10.1109/ISPA.2009.5297658

  18. van der Laan, W.J., Jalba, A.C., Roerdink, J.B.T.M.: Accelerating wavelet lifting on graphics hardware using CUDA. IEEE Trans. Parallel Distrib. Syst. 22(1), 132–146 (2011). doi:10.1109/TPDS.2010.143

    Article  Google Scholar 

  19. Song, C., Li, Y., Guo, J., Lei, J.: Block-based two-dimensional wavelet transform running on graphics processing unit. IET Comput. Digit. Tech. 8(5), 229–236 (2014). doi:10.1049/iet-cdt.2013.0141

    Article  Google Scholar 

  20. Iwahashi, M.: Four-band decomposition module with minimum rounding operations. Electron. Lett. 43(6), 27–28 (2007). doi:10.1049/el:20073479

    Article  Google Scholar 

  21. Iwahashi, M., Kiya, H.: A new lifting structure of non separable 2D DWT with compatibility to JPEG 2000. In: Acoustics Speech and Signal Processing (ICASSP), pp. 1306–1309 (2010). doi:10.1109/ICASSP.2010.5495427

  22. Iwahashi, M., Kiya, H.: Non separable two dimensional discrete wavelet transform for image signals. In: Discrete Wavelet Transforms—A Compendium of New Approaches and Recent Applications. InTech (2013). doi:10.5772/51199

    Google Scholar 

  23. Kula, M., Barina, D., Zemcik, P.: Block-based approach to 2-D wavelet transform on GPUs. In: International Conference on Information Technology—New Generations (ITNG), pp. 643–653. Springer, Berlin (2016). doi:10.1007/978-3-319-32467-8_56

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Barina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barina, D., Kula, M. & Zemcik, P. Parallel wavelet schemes for images. J Real-Time Image Proc 16, 1365–1381 (2019). https://doi.org/10.1007/s11554-016-0646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0646-3

Keywords