Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Small biomolecules (m/z < 500) are the material basis of organisms and participate in life activities, but their comprehensive and accurate detection in complex samples remains a challenge. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful detection tool for molecular analysis with high throughput. The development of a new matrix is essential to improve the efficiency of the MALDI-MS for molecular compound detection. In this work, the sandwich-like gold nanoparticles@mesoporous silica nanocomposite@silver nanoparticles (Au@MSN@Ag) nanospheres were prepared by layer-by-layer super-assembly strategy, and can be used as a novel matrix for the quantitative detection and enrichment of small biomolecules by LDI-MS. The sandwich-like nanospheres form a unique plasma resonant cavity that effectively absorbs the laser energy, while the homogeneous mesoporous structure of MSN can lock the analyte, which is essential for efficient LDI of small molecules. Compared to traditional matrices, Au@MSN@Ag shows the advantages of low background, wide application range, high sensitivity, super high salt and protein tolerance, and good stability. For example, the detection limit of glucose was as low as 5 fmol, and showed a good linear relationship in the range of 1–750 µg/mL. Au@MSN@Ag assisted LDI-MS allows the enrichment and detection of small molecules in traditional Chinese medicine (TCM) without derivatization and purification, classification of herbs using the accurate quantitative results oligosaccharides, and identification of gelatin by amino acid content. This research could help in designing more efficient nanostructure matrices and further explored the application of LDI-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Stockwell, B. R. Exploring biology with small organic molecules. Nature 2004, 432, 846–854.

    Article  CAS  Google Scholar 

  2. Scott, D. E.; Bayly, A. R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discov. 2016, 15, 533–550.

    Article  CAS  Google Scholar 

  3. Li, N.; Li, S. M.; Li, T.; Yang, H.; Zhang, Y. Y.; Zhao, Z. W. Co-incorporated mesoporous carbon material-assisted laser desorption/ionization ion source as an online interface of in vivo microdialysis coupled with mass spectrometry. Anal. Chem. 2020, 92, 5482–5491.

    Article  CAS  Google Scholar 

  4. Schymanski, E. L.; Neumann, S. The critical assessment of small molecule identification (CASMI): Challenges and solutions. Metabolites 2013, 3, 517–538.

    Article  CAS  Google Scholar 

  5. He, H. X.; Qin, L.; Zhang, Y. W.; Han, M. M.; Li, J. M.; Liu, Y. Q.; Qiu, K. D.; Dai, X. Y.; Li, Y. Y.; Zeng, M. M. et al. 3,4-Dimethoxycinnamic acid as a novel matrix for enhanced in situ detection and imaging of low-molecular-weight compounds in biological tissues by MALDI-MSI. Anal. Chem. 2019, 91, 2634–2643.

    Article  CAS  Google Scholar 

  6. Xiao, H. M.; Liu, P.; Zheng, S. J.; Wang, X.; Ding, J.; Feng, Y. Q. Screening of amino acids in dried blood spots by stable isotope derivatization-liquid chromatography-electrospray ionization mass spectrometry. Chin. Chem. Lett. 2020, 31, 2423–2427.

    Article  CAS  Google Scholar 

  7. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.

    Article  CAS  Google Scholar 

  8. Huang, L.; Wan, J. J.; Wei, X.; Liu, Y.; Huang, J. Y.; Sun, X. M.; Zhang, R.; Gurav, D. D.; Vedarethinam, V.; Li, Y. et al. Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun. 2017, 8, 220.

    Article  Google Scholar 

  9. Jiang, Y. M.; Sun, J.; Cui, Y.; Liu, H. H.; Zhang, X. Y.; Jiang, Y. R.; Nie, Z. X. Ti3C2 MXene as a novel substrate provides rapid differentiation and quantitation of glycan isomers with LDI-MS. Chem. Commun. 2019, 55, 10619–10622.

    Article  CAS  Google Scholar 

  10. van Kampen, J. J. A.; Burgers, P. C.; de Groot, R.; Gruters, R. A.; Luider, T. M. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom. Rev. 2011, 30, 101–120.

    Article  CAS  Google Scholar 

  11. Stopka, S. A.; Rong, C.; Korte, A. R.; Yadavilli, S.; Nazarian, J.; Razunguzwa, T. T.; Morris, N. J.; Vertes, A. Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew. Chem., Int. Ed. 2016, 55, 4482–4486.

    Article  CAS  Google Scholar 

  12. Shi, R.; Dai, X.; Li, W. F.; Lu, F.; Liu, Y.; Qu, H. H.; Li, H.; Chen, Q. Y.; Tian, H.; Wu, E. H. et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano 2017, 11, 9500–9513.

    Article  CAS  Google Scholar 

  13. Fan, B. Y.; Zhou, H. Y.; Wang, Y. H.; Zhao, Z. Q.; Ren, S. Y.; Xu, L.; Wu, J.; Yan, H. Y.; Gao, Z. X. Surface siloxane-modified silica materials combined with metal-organic frameworks as novel MALDI matrixes for the detection of low-MW compounds. ACS Appl. Mater. Interfaces 2020, 12, 37793–37803.

    Article  CAS  Google Scholar 

  14. Sun, X. M.; Huang, L.; Zhang, R.; Xu, W.; Huang, J. Y.; Gurav, D. D.; Vedarethinam, V.; Chen, R. P.; Lou, J. T.; Wang, Q. et al. Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci. 2018, 4, 223–229.

    Article  CAS  Google Scholar 

  15. Wei, X.; Liu, Z. H.; Jin, X. L.; Huang, L.; Gurav, D. D.; Sun, X. M.; Liu, B. H.; Ye, J.; Qian, K. Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal. Chim. Acta 2017, 950, 147–155.

    Article  CAS  Google Scholar 

  16. Gao, M.; Zeng, J.; Liang, K.; Zhao, D. Y.; Kong, B. Mesoporous silica materials: Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications. Adv. Funct. Mater. 2020, 30, 1906950.

    Article  CAS  Google Scholar 

  17. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  18. Zhao, Q. Y.; Li, H.; Chen, H.; Wu, C.; Ei-Seedi, H.; Xu, X. B.; Du, M. High throughput analysis and quantitation of α-dicarbonyls in biofluid by plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry. J. Hazard. Mater. 2021, 403, 123580.

    Article  CAS  Google Scholar 

  19. Wang, S. H.; Niu, H. Y.; Zeng, T.; Zhang, X. L.; Cao, D.; Cai, Y. Q. Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Micropor. Mesopor. Mat. 2017, 239, 390–395.

    Article  CAS  Google Scholar 

  20. Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; Xie, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

    Article  CAS  Google Scholar 

  21. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phy. Sci. 1973, 241, 20–22.

    Article  CAS  Google Scholar 

  22. Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

    Article  CAS  Google Scholar 

  23. Xu, G. J.; Liu, S. J.; Peng, J. X.; Lv, W. P.; Wu, R. A. Facile synthesis of gold@graphitized mesoporous silica nanocomposite and its surface-assisted laser desorption/ionization for time-of-flight mass spectroscopy. ACS Appl. Mater. Interfaces 2015, 7, 2032–2038.

    Article  CAS  Google Scholar 

  24. Jiang, Z. J.; Liu, C. Y. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J. Phys. Chem. B 2003, 107, 12411–12415.

    Article  CAS  Google Scholar 

  25. Li, C. R.; Mei, J.; Li, S. W.; Lu, N. P.; Wang, L. N.; Chen, B. Y.; Dong, W. J. One-pot synthesis of Ag@SiO2@Ag sandwich nanostructures. Nanotechnology 2010, 21, 245602.

    Article  Google Scholar 

  26. Cai, Y. G.; Piao, X. Q.; Gao, W.; Zhang, Z. J.; Nie, E.; Sun, Z. Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 2017, 7, 34041–34048.

    Article  CAS  Google Scholar 

  27. Liu, J.; Yang, T. Y.; Wang, D. W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798.

    Article  Google Scholar 

  28. Guo, Z.; Ganawi, A. A. A.; Liu, Q.; He, L. Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal. Bioanal. Chem. 2006, 384, 584–592.

    Article  CAS  Google Scholar 

  29. Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.

    Article  Google Scholar 

  30. Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordström, A.; Siuzdak, G. Clathrate nanostructures for mass spectrometry. Nature 2007, 449, 1033–1036.

    Article  CAS  Google Scholar 

  31. Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

    Article  CAS  Google Scholar 

  32. Gan, J. R.; Wei, X.; Li, Y. X.; Wu, J.; Qian, K.; Liu, B. H. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomed.: Nanotechnol., Biol. Med. 2015, 11, 1715–1723.

    Article  CAS  Google Scholar 

  33. Näsholm, T.; Ekblad, A.; Nordin, A.; Giesler, R.; Högberg, M.; Högberg, P. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914–916.

    Article  Google Scholar 

  34. Stone, T. W. Amino acids as neurotransmitters of corticofugal neurones in the rat: A comparison of glutamate and aspartate. Br. J. Pharmacol. 1979, 67, 545–551.

    Article  CAS  Google Scholar 

  35. Jackson, A. U.; Shum, T.; Sokol, E.; Dill, A.; Cooks, R. G. Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 2011, 399, 367–376.

    Article  CAS  Google Scholar 

  36. McLuckey, S. A.; Schoen, A. E.; Cooks, R. G. Silver ion affinities of alcohols as ordered by mass spectrometry/mass spectrometry. J. Am. Chem. Soc. 1982, 104, 848–850.

    Article  CAS  Google Scholar 

  37. Monroe, E. B.; Koszczuk, B. A.; Losh, J. L.; Jurchen, J. C.; Sweedler, J. V. Measuring salty samples without adducts with MALDI MS. Int. J. Mass Spectrom. 2007, 260, 237–242.

    Article  CAS  Google Scholar 

  38. Ropartz, D.; Bodet, P. E.; Przybylski, C.; Gonnet, F.; Daniel, R.; Fer, M.; Helbert, W.; Bertrand, D.; Rogniaux, H. Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. Rapid Commun. Mass Spectrom. 2011, 25, 2059–2070.

    Article  CAS  Google Scholar 

  39. Wan, D.; Gao, M. X.; Wang, Y. H.; Zhang, P.; Zhang, X. M. A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J. Sep. Sci. 2013, 36, 629–635.

    Article  CAS  Google Scholar 

  40. Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, 2020 Edition; Chinese Medicine Science and Technology Press: Beijing, 2020.

    Google Scholar 

  41. Wu, F. Q.; Zhang, Y.; Liu, W. J.; Zhu, N. N.; Chen, J. B.; Sun, Z. R. Comparison of torrefied and lyophilized Dendrobii Officinalis Caulis (Tiepishihu) by Fourier transform infrared spectroscopy and two-dimensional correlation spectroscopy. J. Mol. Struct. 2020, 1204, 127554.

    Article  CAS  Google Scholar 

  42. Zheng, X. Q.; Jin, C. S.; Zhang, Y. Z.; Liu, J. L.; Yu, N. J.; Ou, J. M. Content determination of 3 saccharides in 3 kinds of medicinal dendrobii caulis by HPLC-CAD. China Pharm. 2020, 31, 1185–1189.

    Google Scholar 

  43. Li, L. F.; Yao, H.; Li, X. J.; Zhang, Q. W.; Wu, X. Y.; Wong, T.; Zheng, H. M.; Fung, H.; Yang, B. X.; Ma, D. et al. Destiny of Dendrobium officinale polysaccharide after oral administration: Indigestible and nonabsorbing, ends in modulating gut microbiota. J. Agric. Food Chem. 2019, 67, 5968–5977.

    Article  CAS  Google Scholar 

  44. Hanani, Z. A. N.; Roos, Y. H.; Kerry, J. P. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014, 71, 94–102.

    Article  Google Scholar 

  45. Aykın-Dinçer, E.; Koç, A.; Erbaş, M. Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poultry Sci. 2017, 96, 4124–4131.

    Article  Google Scholar 

  46. Cheng, X. L.; Wei, F.; Xiao, X. Y.; Zhao, Y. Y.; Shi, Y.; Liu, W.; Zhang, P.; Ma, S. C.; Tian, S. S.; Lin, R. C. Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis. J. Pharm. Biomed. Anal. 2012, 62, 191–195.

    Article  CAS  Google Scholar 

  47. Wang, D. L.; Ru, W. W.; Xu, Y. P.; Zhang, J. L.; He, X. X.; Fan, G. H.; Mao, B. B.; Zhou, X. S.; Qin, Y. F. Chemical constituents and bioactivities of Colla corii asini. Drug Discov. Ther. 2014, 8, 201–207.

    Article  Google Scholar 

  48. Azilawati, M. I.; Hashim, D. M.; Jamilah, B.; Amin, I. Validation of a reverse-phase high-performance liquid chromatography method for the determination of amino acids in gelatins by application of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. J. Chromatogr. A 2014, 1353, 49–56.

    Article  CAS  Google Scholar 

  49. Jamilah, B.; Harvinder, K. G. Properties of gelatins from skins of fish — black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem. 2002, 77, 81–84.

    Article  CAS  Google Scholar 

  50. Kim, K.; Yoon, J. K. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. J. Phys. Chem. B 2005, 109, 20731–20736.

    Article  CAS  Google Scholar 

  51. Xu, S. P.; Zhao, B.; Xu, W. Q.; Fan, Y. G. Preparation of Au-Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS). Colloids Surf. A: Physicochem. Eng. Aspects 2005, 257–258, 313–317.

    Article  Google Scholar 

  52. Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 2016, 3, 1600024.

    Article  Google Scholar 

  53. Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

    Article  CAS  Google Scholar 

  54. Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014, 8, 7630–7638.

    Article  CAS  Google Scholar 

  55. de Arquer, F. P. G.; Mihi, A.; Kufer, D.; Konstantatos, G. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 2013, 7, 3581–3588.

    Article  Google Scholar 

  56. Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 2012, 12, 5014–5019.

    Article  CAS  Google Scholar 

  57. Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.

    Article  CAS  Google Scholar 

  58. Enustun, B. V.; Turkevich, J. Coagulation of colloidal gold. J. Am. Chem. Soc. 1963, 85, 3317–3328.

    Article  CAS  Google Scholar 

  59. Deng, Z. W.; Chen, M.; Wu, L. M. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J. Phys. Chem. C 2007, 111, 11692–11698.

    Article  CAS  Google Scholar 

  60. Piraud, M.; Vianey-Saban, C.; Petritis, K.; Elfakir, C.; Steghens, J. P.; Morla, A.; Bouchu, D. ESI-MS/MS analysis of underivatised amino acids: A new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun. Mass Spectrom. 2003, 17, 1297–1311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFC1604600, 2017YFA0206901, 2019YFC1604601, 2017YFA0206900, and 2018YFC1602301), the National Natural Science Foundation of China (Nos. 21705027, 21974029 51808328, 61903235, 42007218, and 51703109), the Major Scientific and Technological Innovation Project of Shandong (Nos. 2018CXGC1406, 2019JZZY010457 and 2019JZZY020309). The Natural Science Foundation of Shanghai (18ZR1404700), and Construction Project of Shanghai Key Laboratory of Molecular Imaging (18DZ2260400), Shanghai Municipal Education Commission (Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS, 2018–2020). The ability establishment of sustainable use for valuable Chinese medicine resources (2060302). The natural Science Foundation of Shandong Province, China (ZR2020QE228).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxia Ma, Rong Rong or Biao Kong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Ma, C., Gao, M. et al. Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules. Nano Res. 15, 2722–2733 (2022). https://doi.org/10.1007/s12274-021-3741-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3741-0

Keywords