Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extending and Completing Probabilistic Knowledge and Beliefs Without Bias

  • Technical Contribution
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

Combining logic with probability theory provides a solid ground for the representation of and the reasoning with uncertain knowledge. Given a set of probabilistic conditionals like “If A then B with probability x”, a crucial question is how to extend this explicit knowledge, thereby avoiding any unnecessary bias. The connection between such probabilistic reasoning and commonsense reasoning has been elaborated especially by Jeff Paris, advocating the principle of Maximum Entropy (MaxEnt). In this paper, we address the general concepts and ideas underlying MaxEnt and leading to it, illustrate the use of MaxEnt by reporting on an example application from the medical domain, and give a brief survey on recent approaches to extending the MaxEnt principle to first-order logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bacchus F, Grove AJ, Halpern JY, Koller D (1996) From statistical knowledge bases to degrees of belief. Artificial Intelligence 87(1–2):75–143

    Article  MathSciNet  Google Scholar 

  2. Beierle C, Finthammer M, Potyka N, Varghese J, Kern-Isberner G (2013) A case study on the application of probabilistic conditional modelling and reasoning to clinical patient data in neurosurgery. In: van der Gaag LC (eds) Proceedings of Symbolic and Quantitative Approaches to Reasoning with Uncertainty—12th European Conference, ECSQARU 2013, vol 7958 of LNCS. Springer, Utrecht, pp 49–60

  3. Bruch HP, Trentz O (2008) Berchthold Chirurgie, 6 Auflage. Elsevier GmbH

  4. Cowell RG, Dawid AP, Lauritzen SL, Spiegelhalter DJ (1999) Probabilistic networks and expert systems. Springer, New York Berlin Heidelberg

    MATH  Google Scholar 

  5. Delgrande J (1998) On first-order conditional logics. Artificial Intelligence 105:105–137

    Article  MathSciNet  MATH  Google Scholar 

  6. Finthammer M, Beierle C, Berger B, Kern-Isberner G (2009) Probabilistic reasoning at optimum entropy with the MEcore system. In: Lane HC, Guesgen HW (eds) Proceedings 22nd International FLAIRS Conference., FLAIRS’09AAAI Press, Menlo Park, pp 535–540

  7. Fisseler J (2012) First-order probabilistic conditional logic and maximum entropy. Logic J IGPL 20(5):796–830

    Article  MathSciNet  Google Scholar 

  8. Getoor L, Taskar B (ed) (2007) Introduction to statistical relational learning. MIT Press

  9. Hosten N, Liebig T (2007) Computertomografie von Kopf und Wirbelsäule. Georg Thieme Verlag

  10. Jaynes ET (1983) Papers on probability. Statistics and Statistical Physics. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  11. Kern-Isberner G (2001) Conditionals in nonmonotonic reasoning and belief revision. Springer, Lecture Notes in Artificial Intelligence LNAI 2087:

  12. Kern-Isberner G, Beierle C, Finthammer M, Thimm M (2012) Comparing and evaluating approaches to probabilistic reasoning: theory, implementation, and applications. Trans Large Scale Data Knowl Cent Syst 6:31–75

    Google Scholar 

  13. Kern-Isberner G, Thimm M (2010) Novel semantical approaches to relational probabilistic conditionals. In: Lin F, Sattler U, Truszczynski M (eds) Proceedings Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, KR’2010, pp 382–391. AAAI Press

  14. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A , Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

  15. Mueller M (2007) Chirurgie für Studium und Praxis, 9. Auflage. Medizinische Vlgs- u. Inform.-Dienste

  16. Paris JB (1994) The uncertain reasoner’s companion—a mathematical perspective. Cambridge University Press

  17. Paris JB, Vencovska A (1997) In defence of the maximum entropy inference process. Int J Approx Reason 17(1):77–103

    Article  MathSciNet  MATH  Google Scholar 

  18. Paris J (1999) Common sense and maximum entropy. Synthese 117:75–93

    Article  MathSciNet  Google Scholar 

  19. Paris JB (2014) What you see is what you get. Entropy 16(11):6186–6194

    Article  Google Scholar 

  20. Park BJ, Kim HK, Sade B, Lee JH (2009) Epidemiology. In: Lee JH (eds) Meningiomas: diagnosis, treatment, and outcome, Springer, p 11

  21. Pearl J (1988) Probabilistic reasoning in intelligent systems. Ca , Morgan Kaufmann, San Mateo

  22. Rödder W, Reucher E, Kulmann F (2006) Features of the expert-system-shell SPIRIT. Log J IGPL 14(3):483–500

    Article  MATH  Google Scholar 

  23. Benjamin Margolin Rottman and Reid Hastie (2014) Reasoning about causal relationships: inferences on causal networks. Psychol Bull 140(1):109–139

    Article  Google Scholar 

  24. Schramm M, Ertel W (1999) Reasoning with probabilities and maximum entropy: the system PIT and its application in LEXMED. In: Symposium on Operations Research, SOR’99

  25. Shore JE, Johnson RW (1980) Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans Inf Theory IT-26:26–37

  26. Steiger HJ, Reulen HJ (2006) Manual Neurochirurgie. Ecomed Medizin

  27. Thimm M, Kern-Isberner G (2012) On probabilistic inference in relational conditional logics. Log J IGPL Special Issue Relat Approaches Knowl Represent Learning 20(5):872–908

    MathSciNet  MATH  Google Scholar 

  28. Thimm M, Kern-Isberner G, Fisseler J (2011) Relational probabilistic conditional reasoning at maximum entropy. In: ECSQARU, volume 6717 of LNCS, Springer, pp 447–458

  29. van Fraassen B (1989) Laws and Symmetries. Clarendon Press, Oxford

    Book  Google Scholar 

  30. Varghese J (2012) Using probabilistic logic for the analyis and evaluation of clinical patient data in neurosurgery. B.Sc. Thesis, FernUniversität in Hagen (in German)

  31. Varghese J, Beierle C, Potyka N, Kern-Isberner G (2013) Using probabilistic logic and the principle of maximum entropy for the analysis of clinical brain tumor data. In: Proceedings of CBMS 2013, IEEE Press, New York, pp 401–404

Download references

Acknowledgments

We are grateful to Julian Varghese for his work on the medical application described in Sect. 3, and we thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beierle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beierle, C., Kern-Isberner, G., Finthammer, M. et al. Extending and Completing Probabilistic Knowledge and Beliefs Without Bias. Künstl Intell 29, 255–262 (2015). https://doi.org/10.1007/s13218-015-0380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-015-0380-1

Keywords