Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Homogeneous spiking neural P systems with structural plasticity

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Spiking neural P system (SNP system) is a model of computation inspired by the mechanism of spiking neurons. An SNP system is a directed graph of neurons that can communicate with each other using an object known as a spike (the object spike represents action potential or nerve impulse). Spiking neural P systems with structural plasticity (SNPSP system) is a variant of the SNP system model. It incorporates the concept of structural plasticity to the SNP system model. SNPSP systems have the ability to add and delete connections between neurons. In SNPSP systems, the behavior of a neuron can be “programmed” by giving it a set of rules. Different set of rules will result in different behaviors. In this work, we show that it is possible to construct a universal SNPSP system where all the neurons in the system use the same set of rules. Such systems are called homogeneous SNPSP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alhazov, A., Freund, R., Oswald, M., & Slavkovik, M. (2006). Extended spiking neural P systems. In: Membrane computing (pp. 123–134). Berlin: Springer. https://doi.org/10.1007/11963516_8.

    Book  MATH  Google Scholar 

  2. Cabarle, F. G., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917. https://doi.org/10.1007/s00521-015-1857-4.

    Article  MATH  Google Scholar 

  3. Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural P systems with scheduled synapses. IEEE Transactions on NanoBioscience, 16(8), 792–801. https://doi.org/10.1109/TNB.2017.2762580.

    Article  Google Scholar 

  4. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2015). Asynchronous spiking neural P systems with structural plasticity. In: International conference on unconventional computation and natural computation (pp. 132–143). Berlin: Springer.

    MATH  Google Scholar 

  5. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2016). Sequential spiking neural P systems with structural plasticity based on max/min spike number. Neural Computing and Applications, 27(5), 1337–1347.

    Article  Google Scholar 

  6. Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural P systems. Theoretical Computer Science, 410(24), 2352–2364. https://doi.org/10.1016/j.tcs.2009.02.031. Formal languages and applications: a collection of papers in Honor of Sheng Yu.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Ionescu, M., Ishdorj, T. O., Păun, A., Păun, G., & Pérez-Jiménez, M. J. (2008). Spiking neural P systems with extended rules: universality and languages. Natural Computing, 7(2), 147–166. https://doi.org/10.1007/s11047-006-9024-6.

    Article  MathSciNet  MATH  Google Scholar 

  8. de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.

    Article  MathSciNet  Google Scholar 

  9. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: A short survey. Journal of Membrane Computing,. https://doi.org/10.1007/s41965-018-00002-x.

    Article  MathSciNet  Google Scholar 

  10. Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing, 115, 81–91. https://doi.org/10.1016/j.neucom.2012.12.032.

    Article  Google Scholar 

  11. Fan, S., Paul, P., Wu, T., Rong, H., & Zhang, G. (2020). On applications of spiking neural P systems. Applied Sciences, 10(20), 7011. https://doi.org/10.3390/app10207011.

    Article  Google Scholar 

  12. Haiming, C., Ishdorj, T. O., & Paun, G. (2007). Computing along the axon. Progress in Natural Science, 17(4), 417–423. https://doi.org/10.1080/10020070708541018.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequential SNP systems based on min/max spike number. Theoretical Computer Science, 410(30), 2982–2991. https://doi.org/10.1016/j.tcs.2009.03.004. A bird’s eye view of theory.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ionescu, M., Paun, G., & Yokomori, T. (2007). Spiking neural P systems with an exhaustive use of rules. International Journal of Unconventional Computing, 3, 135–153.

    Google Scholar 

  15. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta Informaticae 71(2,3), 279–308 (2006)

  16. Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X. (2010). Deterministic solutions to qsat and q3sat by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358. https://doi.org/10.1016/j.tcs.2010.01.019.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, K., Chen, W., Zhang, Y., & Pan, L. (2016). Spiking neural P systems with homogeneous neurons and synapses. Neurocomputing, 171, 1548–1555. https://doi.org/10.1016/j.neucom.2015.07.097.

    Article  Google Scholar 

  18. Jiang, K., Song, T., Chen, W., & Pan, L. (2013). Homogeneous spiking neural P systems working in sequential mode induced by maximum spike number. International Journal of Computer Mathematics, 90(4), 831–844.

    Article  MathSciNet  Google Scholar 

  19. Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(4), 270–278. https://doi.org/10.1007/s41965-019-00025-y.

    Article  MathSciNet  Google Scholar 

  20. Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buño, K. C., Adorna, H. N., Hernandez, N. H. S., et al. (2019). Matrix representation and simulation algorithm of spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 145–160.

    Article  MathSciNet  Google Scholar 

  21. Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez, M. J. (2008). Uniform solutions to sat and subset sum by spiking neural P systems. Natural Computing, 8(4), 681. https://doi.org/10.1007/s11047-008-9091-y.

    Article  MathSciNet  MATH  Google Scholar 

  22. Metta, V. P., Raghuraman, S., & Krithivasan, K. (2014). Spiking neural P systems with cooperating rules. In M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, & C. Zandron (Eds.), Membrane Computing (pp. 314–329). Cham: Springer International Publishing.

    MATH  Google Scholar 

  23. Minsky, M. L. (1967). Computation: Finite and infinite machines. Upper Saddle River: Prentice-Hall Inc.

    MATH  Google Scholar 

  24. Ochirbat, O., Ishdorj, T. O., & Cichon, G. (2020). An error-tolerant serial binary full-adder via a spiking neural p system using hp/lp basic neurons. Journal of Membrane Computing, 2(1), 42–48. https://doi.org/10.1007/s41965-020-00033-3.

    Article  MathSciNet  Google Scholar 

  25. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers, Communications and Control, 4(3), 273–282.

    Article  Google Scholar 

  26. Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural P systems with neuron division and budding. Science China Information Sciences, 54(8), 1596. https://doi.org/10.1007/s11432-011-4303-y.

    Article  MathSciNet  MATH  Google Scholar 

  27. Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(08), 1750042. https://doi.org/10.1142/s0129065717500423.

    Article  Google Scholar 

  28. Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural P systems with astrocytes. Neural Computation, 24(3), 805–825. https://doi.org/10.1162/neco_a_00238.

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural P systems with weighted synapses. Neural Processing Letters, 35(1), 13–27. https://doi.org/10.1007/s11063-011-9201-1.

    Article  Google Scholar 

  30. Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., et al. (2020). Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188, 105064. https://doi.org/10.1016/j.knosys.2019.105064.

    Article  Google Scholar 

  31. Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., & Wang, T. (2013). Fuzzy reasoning spiking neural p system for fault diagnosis. Information Sciences, 235, 106–116. https://doi.org/10.1016/j.ins.2012.07.015. Data-based Control. Decision, Scheduling and Fault Diagnostics.

    Article  MathSciNet  MATH  Google Scholar 

  32. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  Google Scholar 

  33. Păun, Gh, Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. New York: Oxford University Press Inc.

    Book  Google Scholar 

  34. Păun, G. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.

    MathSciNet  Google Scholar 

  35. Song, T., & Pan, L. (2016). Spiking neural P systems with request rules. Neurocomputing, 193(C), 193–200. https://doi.org/10.1016/j.neucom.2016.02.023.

    Article  Google Scholar 

  36. Song, T., Pan, L., & Păun, G. (2013). Asynchronous spiking neural P systems with local synchronization. Information Sciences, 219, 197–207. https://doi.org/10.1016/j.ins.2012.07.023.

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems with rules on synapses. Theoretical Computer Science, 529, 82–95. https://doi.org/10.1016/j.tcs.2014.01.001.

    Article  MathSciNet  MATH  Google Scholar 

  38. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. L. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE Transactions on NanoBioscience, 18(2), 176–190. https://doi.org/10.1109/TNB.2019.2896981.

    Article  Google Scholar 

  39. Song, T., Pang, S., Hao, S., Rodríguez-Patón, A., & Zheng, P. (2019). A parallel image skeletonizing method using spiking neural P systems with weights. Neural Processing Letters, 50(2), 1485–1502. https://doi.org/10.1007/s11063-018-9947-9.

    Article  Google Scholar 

  40. Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2018). Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 1106–1115. https://doi.org/10.1109/TCDS.2017.2785332.

    Article  Google Scholar 

  41. Song, T., & Wang, X. (2015). Homogeneous spiking neural P systems with inhibitory synapses. Neural Processing Letters, 42(1), 199–214. https://doi.org/10.1007/s11063-014-9352-y.

    Article  Google Scholar 

  42. Song, T., Wang, X., Zhang, Z., & Chen, Z. (2014). Homogenous spiking neural P systems with anti-spikes. Neural Computing and Applications, 24(7), 1833–1841. https://doi.org/10.1007/s00521-013-1397-8.

    Article  Google Scholar 

  43. Wang, J., Hoogeboom, H. J., & Pan, L. (2011). Spiking neural P systems with neuron division. In M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing (pp. 361–376). Berlin Heidelberg, Berlin, Heidelberg: Springer.

    Google Scholar 

  44. Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2010). Spiking neural P systems with weights. Neural Computation, 22(10), 2615–2646. https://doi.org/10.1162/neco_a_00022.

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360. https://doi.org/10.1109/TNNLS.2017.2726119.

    Article  MathSciNet  Google Scholar 

  46. Wu, T., Zhang, Z., Păun, G., & Pan, L. (2016). Cell-like spiking neural P systems. Theoretical Computer Science, 623, 180–189. https://doi.org/10.1016/j.tcs.2015.12.038.

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, Z., Cavaliere, M., An, P., Vrudhula, S., & Cao, Y. (2014). The stochastic loss of spikes in spiking neural P systems: Design and implementation of reliable arithmetic circuits. Fundamental Information, 134(1–2), 183–200.

    Article  MathSciNet  Google Scholar 

  48. Zeng, X., Zhang, X., & Pan, L. (2009). Homogeneous spiking neural P systems. Fundamental Information, 97(1–2), 275–294.

    Article  MathSciNet  Google Scholar 

  49. Zeng, X., Zhang, X., Song, T., & Pan, L. (2014). Spiking neural P systems with thresholds. Neural Computation, 26(7), 1340–1361. https://doi.org/10.1162/NECO_a_00605. ( PMID: 24708366).

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006. https://doi.org/10.1142/s0129065714400061.

    Article  Google Scholar 

  51. Zhang, X., Wang, B., & Pan, L. (2014). Spiking neural P systems with a generalized use of rules. Neural Computation, 26(12), 2925–2943. https://doi.org/10.1162/NECO_a_00665. ( PMID: 25149700).

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao, Y., Liu, X., & Wang, W. (2016). Spiking neural P systems with neuron division and dissolution. PLOS One, 11(9), e0162882. https://doi.org/10.1371/journal.pone.0162882.

    Article  Google Scholar 

Download references

Acknowledgements

R.T.A. de la Cruz and I.C.H. Macababayao are grateful for the Philippine’s Department of Science and Technology - Science Education Institute (DOST-SEI)’s support through the Engineering Research and Development for Technology (ERDT)’s graduate scholarship program. F.G.C. Cabarle thanks the support from the DOST-ERDT project; the Dean Ruben A. Garcia PCA AY2017–2020. H. Adorna would like to thank supports from DOST-ERDT project since 2009 until present; the Semirara Mining Corp. Professorial Chair Award since 2015 until present. The RLC grant from UPD - OVCRD 2019-2020. The work was supported by the Basic Research Program of Science and Technology of Shenzhen (JCYJ20180306172637807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis George C. Cabarle.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Cruz, R.T.A., Cabarle, F.G.C., Macababayao, I.C.H. et al. Homogeneous spiking neural P systems with structural plasticity . J Membr Comput 3, 10–21 (2021). https://doi.org/10.1007/s41965-020-00067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00067-7

Keywords