Abstract
Spiking neural P system (SNP system) is a model of computation inspired by the mechanism of spiking neurons. An SNP system is a directed graph of neurons that can communicate with each other using an object known as a spike (the object spike represents action potential or nerve impulse). Spiking neural P systems with structural plasticity (SNPSP system) is a variant of the SNP system model. It incorporates the concept of structural plasticity to the SNP system model. SNPSP systems have the ability to add and delete connections between neurons. In SNPSP systems, the behavior of a neuron can be “programmed” by giving it a set of rules. Different set of rules will result in different behaviors. In this work, we show that it is possible to construct a universal SNPSP system where all the neurons in the system use the same set of rules. Such systems are called homogeneous SNPSP systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alhazov, A., Freund, R., Oswald, M., & Slavkovik, M. (2006). Extended spiking neural P systems. In: Membrane computing (pp. 123–134). Berlin: Springer. https://doi.org/10.1007/11963516_8.
Cabarle, F. G., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917. https://doi.org/10.1007/s00521-015-1857-4.
Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural P systems with scheduled synapses. IEEE Transactions on NanoBioscience, 16(8), 792–801. https://doi.org/10.1109/TNB.2017.2762580.
Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2015). Asynchronous spiking neural P systems with structural plasticity. In: International conference on unconventional computation and natural computation (pp. 132–143). Berlin: Springer.
Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2016). Sequential spiking neural P systems with structural plasticity based on max/min spike number. Neural Computing and Applications, 27(5), 1337–1347.
Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural P systems. Theoretical Computer Science, 410(24), 2352–2364. https://doi.org/10.1016/j.tcs.2009.02.031. Formal languages and applications: a collection of papers in Honor of Sheng Yu.
Chen, H., Ionescu, M., Ishdorj, T. O., Păun, A., Păun, G., & Pérez-Jiménez, M. J. (2008). Spiking neural P systems with extended rules: universality and languages. Natural Computing, 7(2), 147–166. https://doi.org/10.1007/s11047-006-9024-6.
de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.
Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: A short survey. Journal of Membrane Computing,. https://doi.org/10.1007/s41965-018-00002-x.
Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing, 115, 81–91. https://doi.org/10.1016/j.neucom.2012.12.032.
Fan, S., Paul, P., Wu, T., Rong, H., & Zhang, G. (2020). On applications of spiking neural P systems. Applied Sciences, 10(20), 7011. https://doi.org/10.3390/app10207011.
Haiming, C., Ishdorj, T. O., & Paun, G. (2007). Computing along the axon. Progress in Natural Science, 17(4), 417–423. https://doi.org/10.1080/10020070708541018.
Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequential SNP systems based on min/max spike number. Theoretical Computer Science, 410(30), 2982–2991. https://doi.org/10.1016/j.tcs.2009.03.004. A bird’s eye view of theory.
Ionescu, M., Paun, G., & Yokomori, T. (2007). Spiking neural P systems with an exhaustive use of rules. International Journal of Unconventional Computing, 3, 135–153.
Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta Informaticae 71(2,3), 279–308 (2006)
Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X. (2010). Deterministic solutions to qsat and q3sat by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358. https://doi.org/10.1016/j.tcs.2010.01.019.
Jiang, K., Chen, W., Zhang, Y., & Pan, L. (2016). Spiking neural P systems with homogeneous neurons and synapses. Neurocomputing, 171, 1548–1555. https://doi.org/10.1016/j.neucom.2015.07.097.
Jiang, K., Song, T., Chen, W., & Pan, L. (2013). Homogeneous spiking neural P systems working in sequential mode induced by maximum spike number. International Journal of Computer Mathematics, 90(4), 831–844.
Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(4), 270–278. https://doi.org/10.1007/s41965-019-00025-y.
Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buño, K. C., Adorna, H. N., Hernandez, N. H. S., et al. (2019). Matrix representation and simulation algorithm of spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 145–160.
Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez, M. J. (2008). Uniform solutions to sat and subset sum by spiking neural P systems. Natural Computing, 8(4), 681. https://doi.org/10.1007/s11047-008-9091-y.
Metta, V. P., Raghuraman, S., & Krithivasan, K. (2014). Spiking neural P systems with cooperating rules. In M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, & C. Zandron (Eds.), Membrane Computing (pp. 314–329). Cham: Springer International Publishing.
Minsky, M. L. (1967). Computation: Finite and infinite machines. Upper Saddle River: Prentice-Hall Inc.
Ochirbat, O., Ishdorj, T. O., & Cichon, G. (2020). An error-tolerant serial binary full-adder via a spiking neural p system using hp/lp basic neurons. Journal of Membrane Computing, 2(1), 42–48. https://doi.org/10.1007/s41965-020-00033-3.
Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers, Communications and Control, 4(3), 273–282.
Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural P systems with neuron division and budding. Science China Information Sciences, 54(8), 1596. https://doi.org/10.1007/s11432-011-4303-y.
Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(08), 1750042. https://doi.org/10.1142/s0129065717500423.
Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural P systems with astrocytes. Neural Computation, 24(3), 805–825. https://doi.org/10.1162/neco_a_00238.
Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural P systems with weighted synapses. Neural Processing Letters, 35(1), 13–27. https://doi.org/10.1007/s11063-011-9201-1.
Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., et al. (2020). Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188, 105064. https://doi.org/10.1016/j.knosys.2019.105064.
Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., & Wang, T. (2013). Fuzzy reasoning spiking neural p system for fault diagnosis. Information Sciences, 235, 106–116. https://doi.org/10.1016/j.ins.2012.07.015. Data-based Control. Decision, Scheduling and Fault Diagnostics.
Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.
Păun, Gh, Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. New York: Oxford University Press Inc.
Păun, G. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.
Song, T., & Pan, L. (2016). Spiking neural P systems with request rules. Neurocomputing, 193(C), 193–200. https://doi.org/10.1016/j.neucom.2016.02.023.
Song, T., Pan, L., & Păun, G. (2013). Asynchronous spiking neural P systems with local synchronization. Information Sciences, 219, 197–207. https://doi.org/10.1016/j.ins.2012.07.023.
Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems with rules on synapses. Theoretical Computer Science, 529, 82–95. https://doi.org/10.1016/j.tcs.2014.01.001.
Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. L. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE Transactions on NanoBioscience, 18(2), 176–190. https://doi.org/10.1109/TNB.2019.2896981.
Song, T., Pang, S., Hao, S., Rodríguez-Patón, A., & Zheng, P. (2019). A parallel image skeletonizing method using spiking neural P systems with weights. Neural Processing Letters, 50(2), 1485–1502. https://doi.org/10.1007/s11063-018-9947-9.
Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2018). Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 1106–1115. https://doi.org/10.1109/TCDS.2017.2785332.
Song, T., & Wang, X. (2015). Homogeneous spiking neural P systems with inhibitory synapses. Neural Processing Letters, 42(1), 199–214. https://doi.org/10.1007/s11063-014-9352-y.
Song, T., Wang, X., Zhang, Z., & Chen, Z. (2014). Homogenous spiking neural P systems with anti-spikes. Neural Computing and Applications, 24(7), 1833–1841. https://doi.org/10.1007/s00521-013-1397-8.
Wang, J., Hoogeboom, H. J., & Pan, L. (2011). Spiking neural P systems with neuron division. In M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing (pp. 361–376). Berlin Heidelberg, Berlin, Heidelberg: Springer.
Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2010). Spiking neural P systems with weights. Neural Computation, 22(10), 2615–2646. https://doi.org/10.1162/neco_a_00022.
Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360. https://doi.org/10.1109/TNNLS.2017.2726119.
Wu, T., Zhang, Z., Păun, G., & Pan, L. (2016). Cell-like spiking neural P systems. Theoretical Computer Science, 623, 180–189. https://doi.org/10.1016/j.tcs.2015.12.038.
Xu, Z., Cavaliere, M., An, P., Vrudhula, S., & Cao, Y. (2014). The stochastic loss of spikes in spiking neural P systems: Design and implementation of reliable arithmetic circuits. Fundamental Information, 134(1–2), 183–200.
Zeng, X., Zhang, X., & Pan, L. (2009). Homogeneous spiking neural P systems. Fundamental Information, 97(1–2), 275–294.
Zeng, X., Zhang, X., Song, T., & Pan, L. (2014). Spiking neural P systems with thresholds. Neural Computation, 26(7), 1340–1361. https://doi.org/10.1162/NECO_a_00605. ( PMID: 24708366).
Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006. https://doi.org/10.1142/s0129065714400061.
Zhang, X., Wang, B., & Pan, L. (2014). Spiking neural P systems with a generalized use of rules. Neural Computation, 26(12), 2925–2943. https://doi.org/10.1162/NECO_a_00665. ( PMID: 25149700).
Zhao, Y., Liu, X., & Wang, W. (2016). Spiking neural P systems with neuron division and dissolution. PLOS One, 11(9), e0162882. https://doi.org/10.1371/journal.pone.0162882.
Acknowledgements
R.T.A. de la Cruz and I.C.H. Macababayao are grateful for the Philippine’s Department of Science and Technology - Science Education Institute (DOST-SEI)’s support through the Engineering Research and Development for Technology (ERDT)’s graduate scholarship program. F.G.C. Cabarle thanks the support from the DOST-ERDT project; the Dean Ruben A. Garcia PCA AY2017–2020. H. Adorna would like to thank supports from DOST-ERDT project since 2009 until present; the Semirara Mining Corp. Professorial Chair Award since 2015 until present. The RLC grant from UPD - OVCRD 2019-2020. The work was supported by the Basic Research Program of Science and Technology of Shenzhen (JCYJ20180306172637807).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de la Cruz, R.T.A., Cabarle, F.G.C., Macababayao, I.C.H. et al. Homogeneous spiking neural P systems with structural plasticity . J Membr Comput 3, 10–21 (2021). https://doi.org/10.1007/s41965-020-00067-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41965-020-00067-7