Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bayesian high-dimensional semi-parametric inference beyond sub-Gaussian errors

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

We consider a sparse linear regression model with unknown symmetric error under the high-dimensional setting. The true error distribution is assumed to belong to the locally \(\beta \)-Hölder class with an exponentially decreasing tail, which does not need to be sub-Gaussian. We obtain posterior convergence rates of the regression coefficient and the error density, which are nearly optimal and adaptive to the unknown sparsity level. Furthermore, we derive the semi-parametric Bernstein-von Mises (BvM) theorem to characterize asymptotic shape of the marginal posterior for regression coefficients. Under the sub-Gaussianity assumption on the true score function, strong model selection consistency for regression coefficients are also obtained, which eventually asserts the frequentist’s validity of credible sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armagan, A., Dunson, D. B., & Lee, J. (2013a). Generalized double pareto shrinkage. Statistica Sinica, 23(1), 119–143.

    MathSciNet  MATH  Google Scholar 

  • Armagan, A., Dunson, D. B., Lee, J., Bajwa, W. U., & Strawn, N. (2013b). Posterior consistency in linear models under shrinkage priors. Biometrika, 100(4), 1011–1018.

    MathSciNet  MATH  Google Scholar 

  • Bhattacharya, A., Pati, D., Pillai, N. S., & Dunson, D. B. (2015). Dirichlet-laplace priors for optimal shrinkage. Journal of the American Statistical Association, 110(512), 1479–1490.

    MathSciNet  MATH  Google Scholar 

  • Bickel, P. J., Ritov, Y., & Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, 37(4), 1705–1732.

    MathSciNet  MATH  Google Scholar 

  • Bochkina, N., & Rousseau, J. (2017). Adaptive density estimation based on a mixture of gammas. Electronic Journal of Statistics, 11(1), 916–962.

    MathSciNet  MATH  Google Scholar 

  • Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Springer Series in Statistics. Springer, Berlin. Retrieved from https://books.google.com/books?id=S6jYXmh988UC.

  • Canale, A., & De Blasi, P. (2017). Posterior asymptotics of nonparametric location-scale mixtures for multivariate density estimation. Bernoulli, 23(1), 379–404.

    MathSciNet  MATH  Google Scholar 

  • Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351.

    MathSciNet  MATH  Google Scholar 

  • Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465–480.

    MathSciNet  MATH  Google Scholar 

  • Castillo, I., & Nickl, R. (2013). Nonparametric Bernstein-von Mises theorems in Gaussian white noise. The Annals of Statistics, 41(4), 1999–2028.

    MathSciNet  MATH  Google Scholar 

  • Castillo, I., & Nickl, R. (2014). On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures. The Annals of Statistics, 42(5), 1941–1969.

    MathSciNet  MATH  Google Scholar 

  • Castillo, I., & Rousseau, J. (2015). A Bernstein-von Mises theorem for smooth functionals in semiparametric models. The Annals of Statistics, 43(6), 2353–2383.

    MathSciNet  MATH  Google Scholar 

  • Castillo, I., Schmidt-Hieber, J., & van der Vaart, A. (2015). Bayesian linear regression with sparse priors. The Annals of Statistics, 43(5), 1986–2018.

    MathSciNet  MATH  Google Scholar 

  • Castillo, I., & van der Vaart, A. (2012). Needles and straw in a haystack: Posterior concentration for possibly sparse sequences. The Annals of Statistics, 40(4), 2069–2101.

    MathSciNet  MATH  Google Scholar 

  • Chae, M., Kim, Y., & Kleijn, B. J. K. (2019a). The semi-parametric Bernstein-von Mises theorem for regression models with symmetric errors. Statistica Sinica, 29(3), 1465–1487.

    MathSciNet  MATH  Google Scholar 

  • Chae, M., Lin, L., & Dunson, D. B. (2016). Bayesian sparse linear regression with unknown symmetric error. arXiv e-prints arXiv:1608.02143.

  • Chae, M., Lin, L., & Dunson, D. B. (2019b). Bayesian sparse linear regression with unknown symmetric error. Information and Inference, 8(3), 621–653.

    MathSciNet  Google Scholar 

  • Chae, M., & Walker, S. G. (2017). A novel approach to Bayesian consistency. Electronic Journal of Statistics, 11(2), 4723–4745.

    MathSciNet  MATH  Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96(456), 1348–1360.

    MathSciNet  MATH  Google Scholar 

  • Gao, C., van der Vaart, A. W. & Zhou, H. H. (2015). A general framework for Bayes structured linear models. The Annals of Statistics, To appear.

  • George, E. I., & Foster, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika, 87(4), 731–747.

    MathSciNet  MATH  Google Scholar 

  • Hanson, D. L., & Wright, F. T. (1971). A bound on tail probabilities for quadratic forms in independent random variables. The Annals of Mathematical Statistics, 42(3), 1079–1083.

    MathSciNet  MATH  Google Scholar 

  • Kim, Y., & Jeon, J. J. (2016). Consistent model selection criteria for quadratically supported risks. The Annals of Statistics, 44(6), 2467–2496.

    MathSciNet  MATH  Google Scholar 

  • Kleijn, B., & van der Vaart, A. (2012). The Bernstein-von-Mises theorem under misspecification. Electronic Journal of Statistics, 6, 354–381.

    MathSciNet  MATH  Google Scholar 

  • Kruijer, W., Rousseau, J., & van der Vaart, A. (2010). Adaptive Bayesian density estimation with location-scale mixtures. Electronic Journal of Statistics, 4, 1225–1257.

    MathSciNet  MATH  Google Scholar 

  • Martin, R., Mess, R., & Walker, S. G. (2017). Empirical Bayes posterior concentration in sparse high-dimensional linear models. Bernoulli, 23(3), 1822–1847.

    MathSciNet  MATH  Google Scholar 

  • Narisetty, N. N., & He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. The Annals of Statistics, 42(2), 789–817.

    MathSciNet  MATH  Google Scholar 

  • Narisetty, N. N., Shen, J., & He, X. (2019). Skinny Gibbs: A consistent and scalable Gibbs sampler for model selection. Journal of the American Statistical Association, 114(527), 1205–1217.

    MathSciNet  MATH  Google Scholar 

  • Panov, M., & Spokoiny, V. (2015). Finite sample Bernstein-von Mises theorem for semiparametric problems. Bayesian Analysis, 10(3), 665–710.

    MathSciNet  MATH  Google Scholar 

  • Polson, N. G., & Scott, J. G. (2010). Shrink globally, act locally: Sparse bayesian regularization and prediction. Bayesian Statistics, 9, 501–538.

    Google Scholar 

  • Ročková, V., & George, E. I. (2018). The spike-and-slab Lasso. Journal of the American Statistical Association, 113(521), 431–444.

    MathSciNet  MATH  Google Scholar 

  • Rossell, D., & Rubio, F. J. (2017). Tractable Bayesian variable selection: Beyond normality. Journal of the American Statistical Association (just-accepted).

  • Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics, 38(5), 2587–2619.

    MathSciNet  MATH  Google Scholar 

  • Shen, W., Tokdar, S. T., & Ghosal, S. (2013). Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Biometrika, 100(3), 623–640.

    MathSciNet  MATH  Google Scholar 

  • Shin, M., Bhattacharya, A., & Johnson, V. E. (2015). Scalable Bayesian variable selection using nonlocal prior densities in ultrahigh-dimensional settings. arXiv:150707106.

  • Song, Q., & Liang, F. (2017). Nearly optimal Bayesian shrinkage for high dimensional regression. ArXiv e-prints arXiv:1712.08964.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1), 91–108.

    MathSciNet  MATH  Google Scholar 

  • van de Geer, S. A., & Bühlmann, P. (2009). On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, 3, 1360–1392.

    MathSciNet  MATH  Google Scholar 

  • van der Pas, S., Salomond, J. B., & Schmidt-Hieber, J. (2016). Conditions for posterior contraction in the sparse normal means problem. Electronic Journal of Statistics, 10(1), 976–1000.

    MathSciNet  MATH  Google Scholar 

  • van der Vaart, A. (1998). Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press. Retrieved from https://books.google.com/books?id=UEuQEM5RjWgC.

  • Wright, F. T. (1973). A bound on tail probabilities for quadratic forms in independent random variables whose distributions are not necessarily symmetric. The Annals of Probability, 1(6), 1068–1070.

    MathSciNet  MATH  Google Scholar 

  • Yang, D. (2017). Posterior asymptotic normality for an individual coordinate in high-dimensional linear regression. arXiv preprint arXiv:170402646.

  • Yang, Y., Wainwright, M. J., & Jordan, M. I. (2016a). On the computational complexity of high-dimensional Bayesian variable selection. The Annals of Statistics, 44(6), 2497–2532.

    MathSciNet  MATH  Google Scholar 

  • Yang, Y., Wang, H. J., & He, X. (2016b). Posterior inference in Bayesian quantile regression with asymmetric laplace likelihood. International Statistical Review, 84(3), 327–344.

    MathSciNet  Google Scholar 

  • Ye, F., & Zhang, C. H. (2010). Rate minimaxity of the Lasso and Dantzig selector for the \(\ell _q\) loss in \(\ell _r\) balls. Journal of Machine Learning Research, 11(Dec), 3519–3540.

    MathSciNet  MATH  Google Scholar 

  • Zhang, C. H., & Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 217–242.

    MathSciNet  MATH  Google Scholar 

  • Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American statistical association, 101(476), 1418–1429.

    MathSciNet  MATH  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

KL and LL were supported by NSF Grants IIS 1663870 and DMS Career 1654579. KL was also supported by INHA UNIVERSITY Research Grant. MC was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01054718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungjae Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Chae, M. & Lin, L. Bayesian high-dimensional semi-parametric inference beyond sub-Gaussian errors. J. Korean Stat. Soc. 50, 511–527 (2021). https://doi.org/10.1007/s42952-020-00091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-020-00091-4

Keywords