Abstract
Moving vehicles are detected and tracked automatically in monocular image sequences from road traffic scenes recorded by a stationary camera. In order to exploit the a priori knowledge about shape and motion of vehicles in traffic scenes, a parameterized vehicle model is used for an intraframe matching process and a recursive estimator based on a motion model is used for motion estimation. An interpretation cycle supports the intraframe matching process with a state MAP-update step. Initial model hypotheses are generated using an image segmentation component which clusters coherently moving image features into candidate representations of images of a moving vehicle. The inclusion of an illumination model allows taking shadow edges of the vehicle into account during the matching process. Only such an elaborate combination of various techniques has enabled us to track vehicles under complex illumination conditions and over long (over 400 frames) monocular image sequences. Results on various real-world road traffic scenes are presented and open problems as well as future work are outlined.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bar-Shalom, Y., and Fortmann, T.E., 1988.Tracking and Data Association. Academic Press: New York.
Broida, T.J., Chandrashekhar, S., and Chellappa, R., 1990. Recursive 3-d motion estimation from a monocular image sequence,IEEE Trans. Aerospace Electron. Syst. 26: 639–656.
Deriche, R., and Faugeras, O.D., 1990. Tracking line segments,Image Vis. Comput. 8: 261–270.
Evans, R., 1990. Kalman filtering of pose estimates in applications of the rapid video rate tracker,Proc. Brit. Mach. Vis. Conf., Oxford, pp. 79–84, September 24–27.
Gelb, A., ed., 1974.Applied Optimal Estimation. MIT Press: Cambridge, MA and London.
Gennery, D.B., 1982. Tracking known three-dimensional objects,Proc. Conf. Amer. Assoc. Artif. Intell., Pittsburgh, pp. 13–17, August 18–20.
Gennery, D.B., 1992. Visual tracking of known three-dimensional objects,Intern. J. Comput. Vis. 7: 243–270.
Grimson, W.E.L., 1990a. The combinatorics of object recognition in cluttered environments using constrained search,Artificial Intelligence 44: 121–165.
Grimson, W.E.L., 1990b.Object Recognition by Computer: The Role of Geometric Constraints. MIT Press: Cambridge, MA.
Harris, C., and Stennet, C., 1990. RAPID—a video rate object tracker,Proc. Brit. Mach. Vis. Conf., Oxford, pp. 73–77, September 24–27.
Jazwinski, A.H., 1970.Stochastic Processes and Filtering Theory. Academic Press: New York and London.
Koller, D, 1992. Detektion, Verfolgung and Klassifikation bewegter Objekte in monokularen Bildfolgen am Beispiel von Straßenver-kehrsszenen. Dissertation, Fakultät für Informatik der Universität Karlsruhe (TH), available as vol. DISKI 13,Dissertationen zur Künstlichen Intelligenz, infix-Verlag, Sankt Augustin, Germany.
Koller, D., Heinze, N., and Nagel, H.-H., 1991. Algorithmic characterization of vehicle trajectories from image sequences by motion verbs,Conf. Comput. Vis. Patt. Recog., Lahaina, Maui, Hawaii, pp. 90–95, June 3–6.
Koller, D., Daniilidis, K., Thórhallson, T., and Nagel, H.-H., 1992. Model-based object tracking in traffic scenes,Proc. 2nd Europ. Conf. Comput. Vis., S. Margherita, Ligure, Italy, May 18–23. G. Sandini (ed.),Lecture Notes in Computer Science 588, Springer-Verlag: Berlin, Heidelberg, New York.
Kollnig, H., 1992. Berechnung von Bewegungsverben und Ermittlung einfacher Abläufe. Diplomarbeit, Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik der Universität Karlsruhe (TH), Karlsruhe.
Korn, A.F., 1988. Towards a symbolic representation of intensity changes in images,IEEE Trans. Patt. Anal. Mach. Intell., 10: 610–625.
Lowe, D.G., 1987. Three-dimensional object recognition from single two-dimensional images,Artificial Intelligence 31: 355–395.
Lowe, D.G., 1990. Integrated treatment of matching and measurement errors for robust model-based motion tracking,Proc. 3rd Intern. Conf. Comput. Vis., Osaka, pp. 436–440, December 4–7.
Lowe, D.G., 1991. Fitting parameterized three-dimensional models to images.IEEE Trans. Patt. Anal. Mach. Intell. 13: 441–450.
Marslin, R.F., Sullivan, G.D., and Baker, K.D., 1991. Kalman filters in constrained model-based tracking,Proc. Brit. Mach. Vis. Conf., Glasgow, UK, pp. 371–374, September 24–26, Springer-Verlag, Berlin, Heidelberg, New York.
Maybank, S., 1990. Filter-based estimates of depth,Proc. Brit. Mach. Vis. Conf., Oxford, pp. 349–354, September 24–27.
Mitschke, M., 1990.Dynamik der Kraftfahrzeuge: Band C—Fahrverhalten. Springer-Verlag: Berlin, Heidelberg, New York.
Murray, D.W., Castelow, D.A., and Buxton, B.F., 1989. From image sequences to recognized moving polyhedral objects,Intern. J. Comput. Vis. 3: 181–209.
Scales, L.E., 1985.Introduction to Non-Linear Optimization. Macmillan: London.
Schick, J., and Dickmanns, E.D., 1991. Simultaneous estimation of 3D shape and motion of objects by computer 11263on,Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 256–261, October 7–9.
Sung, C.-K., 1988. Extraktion von typischen und komplexen Vorgängen aus einer Bildfolge einer Verkehrsszene. In H. Bunke, O. Kübler, and P. Stucki, (eds.),DAGM-Symposium Mustererkennung 1988, pp. 90–96, Zürich, Informatik-Fachberichte180, Springer-Verlag: Berlin, Heidelberg, New York.
Thompson, D.W., and Mundy, J.L., 1987. Model-based motion analysis—motion from motion. InRobotics Research, R. Bolles and B. Roth (eds.), MIT Press: Cambridge, MA, pp. 299–309.
Thórhallson, T., 1991. Untersuchung zur dynamischen Modellan-passung in monokularen Bildfolgen. Diplomarbeit, Fakultät für Elektrotechnik der Universität Karlsruhe (TH), durchgeführt am Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik der Universität Karlsruhe (TH), Karlsruhe.
Tsai, R., 1987. A versatile camera calibration technique for high accuracy 3D machine 11263on metrology using off-the-shelf TV cameras and lenses,IEEE Trans. Robot. Autom. 3: 323–344.
Verghese, G., Gale, K.L., and Dyer, C.R., 1990. Real-time, parallel motion tracking of three dimensional objects from spatiotemporal images. In V. Kumar, P.S. Gopalakrishnan, and L.N. Kanal (eds.),Parallel Algorithms for Machine Intelligence and 11263on, pp. 340–359, Springer-Verlag: Berlin, Heidelberg, New York.
Worrall, A.D., Marslin, R.F., Sullivan, G.D., and Baker, K.D., 1991. Model-based tracking,Proc. Brit. Mach. Vis. Conf., pp. 310–318, Glasgow, September 24–26, Springer-Verlag: Berlin, Heidelberg, New York.
Wu, J.J., Rink, R.E., Caelli, T.M., and Gourishankar, V.G., 1988. Recovery of the 3-D location and motion of a rigid object through camera image (an extended Kalman filter approach),Intern. J. Comput. Vis. 3: 373–394.
Young, G., and Chellappa, R., 1990. 3-D motion estimation using a sequence of noisy stereo images: models, estimation and uniqueness results,IEEE Trans. Patt. Anal. Mach. Intell. 12: 735–759.
Zhang, Z., and Faugeras, O.D., 1992. Three-dimensional motion computation and object segmentation in a long sequence of stereo frames,Intern. J. Comput. Vis. 7: 211–241.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Koller, D., Daniilidis, K. & Nagel, H.H. Model-based object tracking in monocular image sequences of road traffic scenes. Int J Comput 11263on 10, 257–281 (1993). https://doi.org/10.1007/BF01539538
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01539538