Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An interval mean–average absolute deviation model for multiperiod portfolio selection with risk control and cardinality constraints

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Interval number is a kind of special fuzzy number and the interval approach is a good method to deal with some uncertainty. An interval mean–average absolute deviation model for multiperiod portfolio selection is presented by taking risk control, transaction costs, borrowing constraints, threshold constraints and cardinality constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. In the proposed model, the return and risk are characterized by the interval mean and interval average absolute deviation of return, respectively. Cardinality constraints limit the number of assets to be held in an efficient portfolio. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on interval theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. A forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, the comparison analysis of the different desired number is provided by a numerical example to illustrate the efficiency of the proposed approach and the designed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York

    MATH  Google Scholar 

  • Anagnostopoulos KP, Mamanis G (2011) The mean-variance cardinality constrained portfolio optimization problem: an experimental evaluation of five multiobjective evolutionary algorithms. Expert Syst Appl 38:14208–14217

    Google Scholar 

  • Arnott RD, Wagner WH (1990) The measurement and control of trading costs. Financ Anal J 6:73–80

    Article  Google Scholar 

  • Bertsimas D, Pachamanova D (2008) Robust multiperiod portfolio management in the presence of transaction costs. Comput Oper Res 35:3–17

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Shioda R (2009) Algorithms for cardinality-constrained quadratic optimization. Comput Optim Appl 43:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Bienstock D (1996) Computational study of a family of mixed-integer quadratic programming problems. Math Program 74:121–140

    MathSciNet  MATH  Google Scholar 

  • Calafiore GC (2008) Multi-period portfolio optimization with linear control policies. Automatica 44(10):2463–2473

    Article  MathSciNet  MATH  Google Scholar 

  • Carlsson C, Fullér R (2001) On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst 122:315–326

    Article  MATH  Google Scholar 

  • Carlsson C, Fulle’r R, Majlender P (2002) A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets Syst 131:13–21

    Article  MathSciNet  MATH  Google Scholar 

  • Cesarone F, Scozzari A, Tardella F (2013) A new method for mean-variance portfolio optimization with cardinality constraints. Ann Oper Res 205:213–234

    Article  MathSciNet  MATH  Google Scholar 

  • Çlikyurt U, Öekici S (2007) Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach. Eur J Oper Res 179(1):186–202

    Article  Google Scholar 

  • Cui XT, Zheng XJ, Zhu SS, Sun XL (2013) Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems. J Glob Optim 56:1409–1423

    Article  MathSciNet  MATH  Google Scholar 

  • Deng X, Li RJ (2012) A portfolio selection model with borrowing constraint based on possibility theory. Appl Soft Comput 12:754–758

    Article  Google Scholar 

  • Deng GF, Lin WT, Lo CC (2012) Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst Appl 39:4558–4566

    Article  Google Scholar 

  • Dubois D, Prade H (1988) Possibility theory. Plenum Perss, New York

    Book  MATH  Google Scholar 

  • Feinstein CD, Thapa MN (1993) Notes: a reformation of a mean-absolute deviation portfolio optimization. Manag Sci 39:1552–1558

    Article  MATH  Google Scholar 

  • Fernández A, Gómez S (2007) Portfolio selection using neural networks. Comput Oper Res 34:1177–1191

    Article  MATH  Google Scholar 

  • Giove S, Funari S, Nardelli C (2006) An interval portfolio selection problems based on regret function. Eur J Oper Res 170:253–264

    Article  MATH  Google Scholar 

  • Gülpinar N, Rustem B, Settergren R (2003) Multistage stochastic mean-variance portfolio analysis with transaction cost. Innov Financ Econ Netw 3:46–63

    Google Scholar 

  • Güpinar N, Rustem B (2007) Worst-case robust decisions for multi-period mean-variance portfolio optimization. Eur J Oper Res 183(3):981–1000

    Article  Google Scholar 

  • Huang X (2008) Risk curve and fuzzy portfolio selection. Comput Math Appl 55:1102–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48:219–225

    Article  MATH  Google Scholar 

  • Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag Sci 37(5):519–531

    Article  Google Scholar 

  • Lai KK, Wang SY, Xu JP, Zhu SS, Fang Y (2002) A class of linear interval programming problems and its application to portfolio selection. IEEE Trans Fuzzy Syst 10:698–704

    Article  Google Scholar 

  • Le Thi HA, Moeini M, Dinh TP (2009) Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA. Comput Manag Sci 6:459–475

    Article  MathSciNet  MATH  Google Scholar 

  • Le Thi HA, Moeini M (2014) Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm. J Optim Theory Appl 161:199–224

    Article  MathSciNet  MATH  Google Scholar 

  • León T, Liem V, Vercher E (2002) Viability of infeasible portfolio selection problems: a fuzzy approach. Eur J Oper Res 139:178–189

    Article  MATH  Google Scholar 

  • Li D, Ng WL (2000) Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Math Finance 10(3):387–406

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Sun X, Wang J (2006) Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math Finance 16:83–101

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Xu JP (2007) A class of possibilistic portfolio selection model with interval coefficients and its application. Fuzzy Optim Decis Making 6:123–137

    Article  MATH  Google Scholar 

  • Li CJ, Li ZF (2012) Multi-period portfolio optimization for asset-liability management with bankrupt control. Appl Math Comput 218:11196–11208

    Article  MathSciNet  MATH  Google Scholar 

  • Liu YJ, Zhang WG, Xu WJ (2012) Fuzzy multi-period portfolio selection optimization models using multiple criteria. Automatica 48:3042–3053

    Article  MathSciNet  MATH  Google Scholar 

  • Liu YJ, Zhang WG, Zhang P (2013) A multi-period portfolio selection optimization model by using interval analysis. Econ Model 33:113–119

    Article  Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Finance 7:77–91

    Google Scholar 

  • Mossin J (1968) Optimal multiperiod portfolio policies. J Bus 41:215–229

  • Murray W, Shek H (2012) A local relaxation method for the cardinality constrained portfolio optimization problem. Comput Optim Appl 53:681–709

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz-Torrubiano R, Suarez A (2010) Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constrains. IEEE Comput Intel Mag 5:92–107

    Article  Google Scholar 

  • Sadjadi SJ, Seyedhosseini SM, Hassanlou Kh (2011) Fuzzy multi period portfolio selection with different rates for borrowing and Lending. Appl Soft Comput 11:3821–3826

    Article  Google Scholar 

  • Shaw DX, Liu S, Kopman L (2008) Lagrangian relaxation procedure for cardinality- constrained portfolio optimization. Optim Methods Softw 23:411–420

    Article  MathSciNet  MATH  Google Scholar 

  • Speranza MG (1993) Linear programming models for portfolio optimization. J Finance 14:107–123

    Google Scholar 

  • Sun XL, Zheng XJ, Li D (2013) Recent advances in mathematical programming with semi-continuous variables and cardinality constraint. J Oper Res Soc China 1:55–77

    Article  MATH  Google Scholar 

  • Vercher E, Bermudez J, Segura J (2007) Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets Syst 158:769–782

  • Woodside-Oriakhi M, Lucas C, Beasley JE (2011) Heuristic algorithms for the cardinality constrained efficient frontier. Eur J Oper Res 213:538–550

  • Wu HL, Li ZF (2012) Multi-period mean-variance portfolio selection with regime switching and a stochastic cash flow. Insurance: Math Econ 50:371–384

  • Yoshimoto A (1996) The mean-variance approach to portfolio optimization subject to transaction costs. J Oper Res Soc Japan 39:99–117

    MathSciNet  MATH  Google Scholar 

  • Yu M, Takahashi S, Inoue H, Wang SY (2010) Dynamic portfolio optimization with risk control for absolute deviation model. Eur J Oper Res 201(2):349–364

    Article  MathSciNet  MATH  Google Scholar 

  • Yu M, Wang SY (2012) Dynamic optimal portfolio with maximum absolute deviation model. J Global Optim 53:363–380

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang WG, Wang YL, Chen ZP, Nie ZK (2007) Possibilistic mean-variance models and efficient frontiers for portfolio selection problem. Inf Sci 177:2787–2801

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang WG, Zhang XL, Xiao WL (2009) Portfolio selection under possibilistic mean-variance utility and a SMO algorithm. Eur J Oper Res 197:693–700

    Article  MATH  Google Scholar 

  • Zhang WG, Liu YJ, Xu WJ (2012) A possibilistic mean–semivariance–entropy model for multi-period portfolio selection with transaction costs. Eur J Oper Res 222:41–349

    Article  MathSciNet  Google Scholar 

  • Zhang WG, Liu YJ, Xu WJ (2014) A new fuzzy programming approach for multi-period portfolio Optimization with return demand and risk control. Fuzzy Sets Syst 246:107–126

    Article  MathSciNet  Google Scholar 

  • Zhang P, Zhang WG (2014) Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy Sets Syst 255:74–91

    Article  Google Scholar 

  • Zhu SS, Li D, Wang SY (2004) Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation. IEEE Trans Autom Control 49(3):447–457

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (nos. 71271161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Additional information

Communicated by V. Loia.

Appendix

Appendix

The codes of thirty stocks are, respectively, S\(_{1}\) (600000), S\(_{2}\) (600005), S\(_{3}\) (600015), S\(_{4}\) (600016), S\(_{5}\) (600019), S\(_{6}\) (600028), S\(_{7}\) (600030), S\(_{8}\) (600036), S\(_{9}\) (600048), S\(_{10}\) (600050), S\(_{11}\) (600104), S\(_{12}\) (600362), S\(_{13}\) (600519), S\(_{14}\) (600900), S\(_{15}\) (601088), S\(_{16}\) (601111), S\(_{17}\) (601166), S\(_{18}\) (601168), S\(_{19}\) (601318), S\(_{20}\) (601328), S\(_{21}\) (601390), S\(_{22}\) (601398), S\(_{23}\) (601600), S\(_{24}\) (601601), S\(_{25}\) (601628), S\(_{26}\) (601857), S\(_{27}\) (601919), S\(_{28}\) (601939), S\(_{29}\) (601988), S\(_{30}\) (601998). The trapezoidal possibility distributions of the return rates of assets at each period can be obtained as shown in Tables 4, 5, 6, 7, 8.

Table 4 The fuzzy return rates on assets of five periods investment
Table 5 The fuzzy return rates on assets of five periods investment
Table 6 The fuzzy return rates on assets of five periods investment
Table 7 The fuzzy return rates on assets of five periods investment
Table 8 The fuzzy return rates on assets of five periods investment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. An interval mean–average absolute deviation model for multiperiod portfolio selection with risk control and cardinality constraints. Soft Comput 20, 1203–1212 (2016). https://doi.org/10.1007/s00500-014-1583-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1583-3

Keywords